首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Deltaalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. (1)H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.  相似文献   

2.
An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Δalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. 1H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.  相似文献   

3.
Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D -mannuronic acid residues of alginate and the D -rhamnose (D -Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D -mannose (D -Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D -Rha, have been localized to the 5′ end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D -Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D -Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D -Man, which is converted to GDP-D -Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D -Man to GDP-D -Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D -Man in the absence of WbpW and AlgA. Polymerase chain reaction (PCR) amplification and sequence analysis of this region reveals three open reading frames (ORFs), orf477, orf488 and orf303, arranged as an operon. ORF477 is homologous to initiating enzymes that transfer glucose 1-phosphate onto undecaprenol phosphate (Und-P), while ORF303 is homologous to L -rhamnosyltransferases involved in polysaccharide assembly. Chromosomal mapping using pulsed field gel electrophoresis (PFGE) and Southern hybridization places orf477, orf488 and orf303 between 0.3 and 0.9 min on the 75 min map of PAO1, giving it a map location distinct from that of previously described polysaccharide genes. This region may represent a unique locus within P. aeruginosa responsible for the synthesis of another polysaccharide molecule.  相似文献   

4.
L Chu  T B May  A M Chakrabarty  T K Misra 《Gene》1991,107(1):1-10
Alginate (Alg), a random polymer of mannuronic acid and glucuronic acid residues, is synthesized and secreted by Pseudomonas aeruginosa primarily during its infection of the lungs of cystic fibrosis patients. The molecular biology and biochemistry of the enzymatic steps leading to the production of the Alg precursor GDP-mannuronic acid have been elucidated, but the mechanism of polymer formation and export of Alg are not understood. We report the nucleotide sequence of a 2.4-kb DNA fragment containing the algE gene, previously designated alg76, encoding the AlgE protein (Mr 54,361) that is believed to be involved in these late steps of Alg biosynthesis. Expression of algE appears to occur from its own promoter. The promoter region contains several direct and inverted repeat sequences and shares structural similarity with promoters of several other alg genes from P. aeruginosa. In addition, the AlgE protein was overproduced from the tac promoter in P. aeruginosa. N-terminal amino acid sequence analysis showed that the polypeptide contains a signal peptide which is cleaved to form the mature protein during AlgE export from the cell cytoplasm.  相似文献   

5.
The Pseudomonas aeruginosa algD gene, encoding GDP-mannose dehydrogenase (GMD) and cloned at Chakrabarty's Laboratory in the expression vector pMMB24 (plasmid pVD211), was mobilized into P.aeruginosa strains 8821 and 8821M. Strain 8821M was a high-alginate-producing variant, spontaneously obtained from mucoid strain 8821, with derepressed levels of GMD, a key enzyme in the regulation of alginate biosynthesis, leading to the irreversible oxidation of GDP-mannose to GDP-mannuronic acid. A slight increase in the level of GMD, in both strains harboring the plasmid pVD211 and batch-grown at 37 degrees C without IPTG induction, led to the increase of production rate and the final concentration of alginate produced by control strains harboring the cloning vector. However, the viscosity of the aqueous solutions prepared with the alginate (3 g l-1) produced by mucoid strains harboring pVD211 was lower than those with the alginate produced by the controls (shear rates in the range 0.6-12 s-1). The specific activity of GMD assayed in crude extracts from cells harboring pVD211 and subjected to IPTG induction (0.5 and 3 mM) presented the highest values. However, either the rate of biosynthesis and final concentration of alginate or the viscosity of solutions prepared with the alginate produced by recombinants grown with IPTG were lower than that possible without overproduction. Therefore, the stimulation of the alginate pathway only by manipulating the rate of the step catalysed by GMD, although possible within certain levels, was at the expense of the final exopolysaccharide quality.  相似文献   

6.
Summary Analysis of the enzymes involved in the biosynthesis of alginic acid by mucoidPseudomonas aeruginosa PAO strain's determined the presence of enzymes required to synthesise GDP-mannuronic acid. Addition of polymannuronic acid to an ammonium sulphate precipitate of a cell free alginate suspension indicated the presence of an enzyme which catalysed the epimerisation of mannuronic acid to guluronic acidafter the polymer had been synthesised. The epimerase was shown to be calcium dependant.Various non-mucoid mutants were also studied. The non-mucoid parental strain PAO 381 also contained the enzymes required for alginate synthesis but they were not expressed. Synthesis of alginic acid led to an increase in the level of these enzymes. In the non-mucoid mutants derived from mucoid parents GDP-mannose dehydrogenase was absent in all strains studied. In some of these strains GDP-mannose pyrophosphorylase was also absent, while in other strains, phosphomannase isomerase was absent or greatly reduced.  相似文献   

7.
8.
Remminghorst U  Rehm BH 《FEBS letters》2006,580(16):3883-3888
Here the putative alginate biosynthesis gene alg44 of Pseudomonas aeruginosa was functionally assigned. Non-polar isogenic alg44 deletion mutants of P. aeruginosa were generated and did neither produce alginate nor released free uronic acids. No evidence for alginate enrichment in the periplasm was obtained. Alginate production was restored by introducing only the gene alg44. PhoA fusion protein analyses suggested that Alg44 is a soluble protein localized in the periplasm. Hexahistidine-tagged Alg44 was detected by immunoblotting. The corresponding 42.6 kDa protein was purified and identified by MALDI/TOF-MS analysis. Alg44 might be directly involved in alginate polymerization presumably by exerting a regulatory function.  相似文献   

9.
10.
Streptomycetes synthesise several bioactive natural products that are modified with sugar residues derived from GDP-mannose. These include the antifungal polyenes, the antibacterial antibiotics hygromycin A and mannopeptimycins, and the anticancer agent bleomycin. Three enzymes function in biosynthesis of GDP-mannose from the glycolytic intermediate fructose 6-phosphate: phosphomannose isomerase (PMI), phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GMPP). Synthesis of GDP-mannose from exogenous mannose requires hexokinase or phosphotransferase enzymes together with PMM and GMPP. In this study, a region containing genes for PMI, PMM and GMPP was cloned from Streptomyces nodosus, producer of the polyenes amphotericins A and B. Inactivation of the manA gene for PMI resulted in production of amphotericins and their aglycones, 8-deoxyamphoteronolides. A double mutant lacking the PMI and PMM genes produced 8-deoxyamphoteronolides in good yields along with trace levels of glycosylated amphotericins. With further genetic engineering these mutants may activate alternative hexoses as GDP-sugars for transfer to aglycones in vivo.  相似文献   

11.
The availability of a technique for site-directed mutagenesis by gene replacement provides a powerful tool for genetic analysis in any bacterial species. We report here a general technique for gene replacement in Pseudomonas aeruginosa. Genes on fragments of cloned P. aeruginosa DNA, altered by transposon mutagenesis, can be transduced into a recipient strain and can replace homologous genes in the P. aeruginosa genome. In this study we applied this technique to the construction of recA mutants of P. aeruginosa. A cloned segment of P. aeruginosa FRD1 DNA was isolated which encoded a protein analogous to the recA gene product of Escherichia coli. The P. aeruginosa recA gene was able to complement several defects associated with recA mutation in E. coli. Transposon Tn1 and Tn501 insertions in the cloned recA gene of P. aeruginosa were used to generate chromosomal recA mutants by gene replacement. These recA strains of P. aeruginosa were more sensitive to UV irradiation and methyl methane sulfonate and showed reduced recombination proficiency compared with the wild type. Also examined was the effect of recA mutations on the expression of alginate, a virulence trait. Alginate is a capsulelike polysaccharide associated with certain pulmonary infections, and its expression is typically unstable. The genetic mechanism responsible for the instability of alginate biosynthesis was shown to be recA independent.  相似文献   

12.
By cloning fragments of plasmid DNA, we have shown that RK2 expresses incompatibility by more than one mechanism. One previously identified (R. J. Meyer, Mol. Gen, Genet. 177:155--161, 1979; Thomas et al., Mol. Gen. Genet. 181:1--7, 1981) determinant for incompatibility is linked to the origin of plasmid DNA replication. When cloned into a plasmid vector, this determinant prevents the stable inheritance of a coresident RK2. However, susceptibility to this mechanism of incompatibility requires an active RK2 replicon and is abolished if another replicator is provided. We have also cloned a second incompatibility determinant, encoded within the 54.1- to 56.4-kilobase region of RK2 DNA, which we call IncP-1(II). An RK2 derivative remains sensitive to IncP-1(II), even when it is not replicating by means of the RK2 replicon. The 54.1- to 56.4-kilobase DNA does not confer susceptibility to the IncP-1(II) mechanism, nor does it encode a detectable system for efficient plasmid partitioning. The incompatibility may be related to the expression of genes mapping in the 54.1- to 56.4-kilobase region, which are required for plasmid maintenance and suppression of plasmid-encoded killing functions.  相似文献   

13.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   

14.
The nucleotide sequence of a 3.4-kb EcoRI-PstI DNA fragment of Xanthomonas campestris pv. campestris revealed two open reading frames, which were designated xanA and xanB. The genes xanA and xanB encode proteins of 448 amino acids (molecular weight of 48,919) and 466 amino acids (molecular weight of 50,873), respectively. These genes were identified by analyzing insertion mutants which were known to be involved in xanthan production. Specific tests for the activities of enzymes involved in the biosynthesis of UDP-glucose and GDP-mannose indicated that the xanA gene product was involved in the biosynthesis of both glucose 1-phosphate and mannose 1-phosphate. The deduced amino acid sequence of xanB showed a significant degree of homology (59%) to the phosphomannose isomerase of Pseudomonas aeruginosa, a key enzyme in the biosynthesis of alginate. Moreover, biochemical analysis and complementation experiments with the Escherichia coli manA fragment revealed that xanB encoded a bifunctional enzyme, phosphomannose isomerase-GDP-mannose pyrophosphorylase.  相似文献   

15.
16.
17.
We have cloned a 13 kb Escherichia coli DNA fragment which complemented the rfe mutation to recover the biosynthesis of E. coli O9 polysaccharide. Using Tn5 insertion inactivation, the rfe gene was localized at the 1.5 kb HindIII-EcoRI region flanking the rho gene. We constructed an rfe-deficient E. coli K-12 mutant by site-directed inactivation using a DNA fragment of the cloned 1.5 kb rfe gene. This also confirmed the presence of the rfe gene in the 1.5 kb region. By simultaneous introduction of both the rfe plasmid and the plasmid of our previously cloned E. coli O9 rfb into this rfe mutant, we succeeded in achieving in vivo reconstitution of O9 polysaccharide biosynthesis. From sequence analysis of the rfe gene, a putative promoter followed by an open reading frame (ORF) was identified downstream of the rho gene. This ORF coincided with the position of the rfe gene determined by Tn5 analysis and site-directed mutagenesis. Furthermore, we identified the rff genes in the 10.5 kb DNA flanking the rfe gene. We recognized at least two functional domains on this cloned rff region. Region I complemented a newly found K-12 rff mutant, A238, to synthesize the enterobacterial common antigen (ECA). Deletion of region II resulted in the synthesis of ECAs with shorter sugar chains. When the 10.5 kb rff genes of the plasmid were inactivated by either deletion or Tn5 insertion, the plasmid lost its ability to give rise to transformants of the rfe mutants.  相似文献   

18.
The specific activities of phosphomannose isomerase (PMI), phosphomannomutase (PMM), GDP-mannose pyrophosphorylase (GMP), and GDP-mannose dehydrogenase (GMD) were compared in a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa and in two spontaneous nonmucoid revertants. In both revertants some or all of the alginate biosynthetic enzymes we examined appeared to be repressed, indicating that the loss of the mucoid phenotype may be a result of decreased formation of sugar-nucleotide precursors. The introduction and overexpression of the cloned P. aeruginosa phosphomannose isomerase (pmi) gene in both mucoid and nonmucoid strains led not only to the appearance of PMI levels in cell extracts several times higher than those present in the wild-type mucoid strain, but also in higher PMM and GMP specific activities. In extracts of both strains, however, the specific activity of GMD did not change as a result of pmi overexpression. In contrast, the introduction of the cloned Escherichia coli manA (pmi) gene in P. aeruginosa caused an increase in only PMI and PMM activities, having no effect on the level of GMP. This suggests that an increase in PMI activity alone does not induce high GMP activity in P. aeruginosa. The heterologous overexpression of the P. aeruginosa pmi gene in the E. coli manA mutant CD1 led to the appearance in cell extracts of not only PMI activity but also GMP activity, both of which are normally undetectable in extracts of CD1. We discuss the implications of these results and propose a mechanism by which overexpression of the P. aeruginosa pmi gene can cause an elevation in both PMM and GMP activities.  相似文献   

19.
As a result of mutational and DNA sequence analysis, a wxc gene cluster involved in the synthesis of the surface lipopolysaccharide (LPS) was identified in Xanthomonas campestris pv. campestris. This gene cluster comprises 15 genes. It was located on a cloned 35-kb fragment of chromosomal DNA, close, but not directly adjacent, to previously characterized genes for LPS biosynthesis. The G + C content of all but one of the wxc genes was atypically low for X. campestris pv. campestris, while the G + C distribution was uniform throughout the cluster. An SDS-PAGE analysis of mutant strains defective in various wxc genes confirmed that genes from this cluster were involved in LPS biosynthesis. The mutant phenotypes allowed the differentiation of three regions within the wxc cluster. Genes from wxc region 1 are necessary for the biosynthesis of the water-soluble LPS O-antigen. Analysis of DNA and deduced amino acid sequences led to the identification of two glycosyltransferases, two components of an ABC transport system, and a possible kinase among the seven putative proteins encoded by genes constituting wxc region 1. The two genes in wxc region 2 were similar to gmd and rmd, which direct the synthesis of the sugar nucleotide GDP-D-rhamnose. Mutations affecting wxc region 2 demonstrated its involvement in the formation of the LPS core. Genes from wxc region 3 showed similarities to genes that code for enzymes that modify nucleotide sugars, and to components of sugar translocation systems that have so far been rarely described in bacteria.  相似文献   

20.
Räty K  Kantola J  Hautala A  Hakala J  Ylihonko K  Mäntsälä P 《Gene》2002,293(1-2):115-122
We have cloned and sequenced polyketide synthase (PKS) genes from the aclacinomycin producer Streptomyces galilaeus ATCC 31,615. The sequenced 13.5-kb region contained 13 complete genes. Their organization as well as their protein sequences showed high similarity to those of other type II PKS genes. The continuous region included the genes for the minimal PKS, consisting of ketosynthase I (aknB), ketosynthase II (aknC), and acyl carrier protein (aknD). These were followed by the daunomycin dpsC and dpsD homologues (aknE2 and F, respectively), which are rare in type II PKS clusters. They are associated with the unusual starter unit, propionate, used in the biosynthesis of aklavinone, a common precursor of aclacinomycin and daunomycin. Accordingly, when aclacinomycins minimal PKS genes were substituted for those of nogalamycin in the plasmid carrying genes for auramycinone biosynthesis, aklavinone was produced in the heterologous hosts. In addition to the minimal PKS, the cloned region included the PKS genes for polyketide ketoreductase (aknA), aromatase (aknE1) and oxygenase (aknX), as well as genes putatively encoding an aklanonic acid methyl transferase (aknG) and an aklanonic acid methyl ester cyclase (aknH) for post-polyketide steps were found. Moreover, the region carried genes for an activator (aknI), a glycosyl transferase (aknK) and an epimerase (aknL) taking part in deoxysugar biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号