首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myotonic dystrophy (DM) is caused by a defect in an unknown gene that maps to 19q13.3, flanked by the tightly linked markers ERCC1 on the proximal side and D19S51 on the distal side. We report the isolation and characterization of overlapping YAC and cosmid clones around D19S51 for the construction of a physical map around this locus. The resulting contig contains the markers D19S51 and D19S62 (another new marker tightly linked to the DM locus) and the distal breakpoint of a radiation hybrid cell line used in the physical mapping of the DM region. We have compared the restriction maps of the YACs and cosmids with that of the genome to investigate the fidelity of these clones.  相似文献   

2.
The myotonic dystrophy (DM) region has been recently shown to be bracketed by two key recombinant events. One recombinant occurs in a Dutch DM family, which maps the DM locus distal to the ERCC1 gene and D19S115 (pE0.8). The other recombinant event is in a French Canadian DM family, which maps DM proximal to D19S51 (p134c). To further resolve this region, we initiated a chromosome walk in a telomeric direction from pE0.8, a proximal marker tightly linked to DM, toward the genetic locus. An Alu-PCR approach to chromosome walking in a cosmid library from flow-sorted chromosome 19 was used to isolate DM region cosmids. This effort has resulted in the cloning of a 350-kb genomic contig of human chromosome 19q13.3. New genetic and physical mapping information has been generated using the newly cloned markers from this study. As a result of this new mapping information, the minimal area that is to contain the DM gene has been redefined. Approximately 200 kb of sequence between pE0.8 and the closest proximal marker to DM, pKEX0.8, that would have otherwise been screened for DM candidate genes, has been eliminated as containing the DM gene.  相似文献   

3.
We have examined the linkage of two new polymorphic DNA markers (D19S62 and D19S63) and a previously unreported polymorphism with an existing DNA marker (ERCC1) to the myotonic dystrophy (DM) locus. In addition, we have used pulsed-field gel electrophoresis to obtain a fine-structure map of this region. The detection of linkage disequilibrium between DM and one of these markers (D19S63) is the first demonstration of this phenomenon in a heterogeneous DM population. The results suggest that at least 58% of DM patients in the British population, as well as those in a French-Canadian subpopulation, are descended from the same ancestral DM mutation. We discuss the implications of this finding in terms of strategies for cloning the DM gene, for a possible role in modification of risk for prenatal and presymptomatic testing, and we speculate on the origin and number of existing mutations which may result in a DM phenotype.  相似文献   

4.
Recent genetic linkage studies have mapped the myotonic dystrophy (DM) locus to 19q13.3. All closely linked DM markers identified to date have been located on the centromeric side of the disease locus, with a relatively large genetic interval (9 cM) observed between the nearest distal marker and DM. We show here that the recently described marker p134C is tightly linked to DM (peak lod score 35.8 at peak recombination fraction .006) and confirm the previous suggestion that the p134C locus, D19S51 maps distal to the disease locus. D19S51 and the closest proximal flanking loci, ERCC1 and D19S115 (pE0.8), define a small genetic interval of less than 2 cM that contains the DM locus.  相似文献   

5.
The myotonic dystrophy (DM) gene maps to the long arm of human chromosome 19 and is flanked by markers ERCC1 and D19S51. Also mapping to this region is the polio virus receptor gene (PVS). To produce more markers for this interval, we have constructed radiation-reduced hybrids by selecting for the retention of ERCC1 and for the loss of PVS. One of the cell lines produced has been characterized extensively and contains about 2 Mb of human DNA derived exclusively from chromosome 19, and includes ERCC1 and D19S51. Phage libraries constructed from DNA of this cell line have been screened and several new markers identified, including two for which cDNAs have been isolated. These represent candidate genes for DM. The new markers have also been used to extend the long-range restriction map of this region.  相似文献   

6.
Variable simple sequence motifs (VSSMs), or microsatellites, were used for the genetic delimitation of the myotonic dystrophy (DM) region at 19q. Three simple sequence motifs were identified in and around the ERCC1 DNA-repair gene at 19q13.2-13.3 and one in the vicinity of the RRAS gene at 19q13.3-qter. A (TG)n repeat, situated within the ninth intron of the ERCC1 gene, was converted into a highly informative multiallelic marker using PCR-mediated DNA amplification and high-resolution gel analysis. The structurally similar sequence motif in the RRAS gene yielded a marker system with only two alleles. Use of these VSSMs for linkage analysis and haplotyping in a selected set of DM families revealed that the DM gene is distal but close to the ERCC1 locus and can be excluded from the CKM-ERCC1 interval at 19q13.2. The order for RRAS and other distally located markers was established as DM-D19S50-[RRAS,KLK]-D19S22-ter.  相似文献   

7.
The region of human chromosome 19 which includes the myotonic dystrophy locus (DM) has recently been redefined by the tight linkage between it and the gene for muscle-specific creatine kinase (CKMM), which lies just proximal to DM. Utilizing human/hamster hybrid cell lines containing defined breakpoints within this region, we have assigned a number of new probes close to DM. Two of these probes, p134B and p134C, were isolated from a single cosmid clone (D19S51) and detect the same BglI RFLP; p134C detects an additional RFLP with the enzyme PstI. Analysis of these probes in the Centre d'Etude du Polymorphisme Humain families demonstrates tight linkage with a number of markers known to be proximal to DM. A two-point lod score of 6.34 at theta = .025 demonstrates the linkage of this probe to DM. Analysis of a DM individual previously shown to be recombinant for other tightly linked markers indicates that p134C is distal to DM. This result indicates that both the new probe and the existing group of proximal probes including CKMM and ERCC1 probably flank DM and define the genetic interval into which this mutation maps.  相似文献   

8.
Recent genetic linkage analyses have mapped the myotonic dystrophy locus to the region of 19q13.2-13.3 lying distal to the gene for creatine kinase subunit M (CKM). The human excision repair gene ERCC1 has also been mapped to this region of chromosome 19. A novel polymorphic DNA marker, pEO.8, has been isolated from a chromosome 19 ERCC1-containing cosmid that maps to a 300-kb NotI fragment encompassing both CKM and ERCC1. Genetic linkage analysis reveals close linkage between pEO.8 and myotonic dystrophy (DM) (zmax = 19.3, theta max = 0.01). Analysis of two key recombinant events suggests a mapping of DM distal to pEO.8 and CKM.  相似文献   

9.
The myotonic dystrophy (DM) mutation has been identified as a heritable unstable CTG trinucleotide repeat sequence. The intergenerational amplification of this sequence is an example of a new class of dynamic mutations responsible for human genetic diseases. To ascertain whether recombination activity influences, or is affected by, the presence of this unique sequence, a comprehensive study of the physical and genetic mapping data for the 1.5-Mb region of human chromosome 19q13.3, which contains the DM locus, was conducted. The recombination rate for this region was examined by correlating genetic distance to physical distance for six selected marker loci. The following markers span the DM region: 19qCEN-p alpha 1.4 (D19S37)-APOC2-CKM-pE0.8 (D19S115)-pGB2.6 (DM)-p134c (D19S51)-19qTER. Initial linear regression analysis of these two parameters failed to reveal a significant linear correlation (coefficient of determination, r2 = .19), suggesting nonuniform rates of recombination. However, the presence of a recombination hot spot was believed to be unlikely, as the marker-to-marker pairs that showed the greatest deviation in recombination frequency were not restricted to a specific region of the 1.5 Mb studied and had relatively broad confidence intervals, as reflected by low LOD values. A second linear regression analysis using only marker intervals with high LOD scores (Zmax > 22) showed linear correlation (r2 = .68) for the entire 1.5-Mb region. This analysis indicated a relatively uniform recombination frequency in the 1.5-Mb region spanning the DM locus. Furthermore, the recombinations observed were neither under- nor overrepresented on DM chromosomes. Consequently, recombination activity is unlikely to influence, or be affected by, the presence of the DM mutation.  相似文献   

10.
One of the world highest prevalence estimates of myotonic dystrophy (DM) has been reported in the Croatian region Istria. To analyse the population genetic characteristics of DM locus in Istria, two intragenic and three extragenic polymorphic markers were tested. The Southern blot technique was used for D19S63 locus analysis, whereas PCR analysis was performed for CKMM, Alu polymorphism, DMPK (G/T) intron 9/HinfI polymorphism, and D19S207 genetic markers. The compound haplotypes segregating with DM were established. A complete association between the DM mutation and D19S63, D19S207, intron 9/HinfI polymorphism and Alu polymorphism markers were found. In all DM chromosomes: D19S63 and Alu markers had the allele 1 in common; D19S207 had the allele 3 in common, DMPK (G/T) intron 9/HinfI marker had the allele 2 in common. The analysis of CKMM polymorphism revealed genotype heterogeneity; in DM chromosomes either allele 2 or allele 4 were found. The haplotype analysis in the population of Croatian Istria supports the linkage disequilibrium between the DM mutation and Alu polymorphism, intron 9/HinfI polymorphism, D19S63 and D19S207 markers as reported worldwide. The results of the haplotype analysis suggest a common origin of the mutation in Istrian population.  相似文献   

11.
Haplotype studies in Wilson disease.   总被引:9,自引:6,他引:3       下载免费PDF全文
In 51 families with Wilson disease, we have studied DNA haplotypes of dinucleotide repeat polymorphisms (CA repeats) in the 13q14.3 region, to examine these markers for association with the Wilson disease gene (WND). In addition to a marker (D13S133) described elsewhere, we have developed three new highly polymorphic markers (D13S314, D13S315, and D13S316) close to the WND locus. We have examined the distribution of marker alleles at the loci studied and have found that D13S314, D13S133, and D13S316 each show nonrandom distribution on chromosomes carrying the WND mutation. We have studied haplotypes of these three markers and have found that there are highly significant differences between WND and normal haplotypes in northern European families. These findings have important implications for mutation detection and molecular diagnosis in families with Wilson disease.  相似文献   

12.
Vascular anomalies are congenital lesions that usually occur sporadically, but can be inherited. Previously, we have described that venous malformations, localized bluish-purple skin lesions, are caused by an activating mutation in the TIE2/TEK receptor. Moreover, we mapped another locus to chromosome 1p21-p22, for venous malformations with glomus cells (VM-GLOM). Here we report a physical map, based on 18 overlapping YAC clones, spanning this 5-Mb VMGLOM locus, from marker GATA63C06 to D1S2664. In addition, we report a sequence-ready PAC map of 46 clones covering 1.48 Mb within the YAC contig, a region to which we have restricted VMGLOM. We describe 21 new STSs and nine novel CA repeats, seven of which are polymorphic. These data will enable positional cloning of genes for diseases mapped to this locus, including the VMGLOM gene, likely a currently unknown regulator of vasculogenesis and/or angiogenesis.  相似文献   

13.
By analysis of crossovers in key recombinant families and by homozygosity analysis of inbred families, the Friedreich ataxia (FRDA) locus was localized in a 300-kb interval between the X104 gene and the microsatellite marker FR8 (D9S888). By homology searches of the sequence databases, we identified X104 as the human tight junction protein ZO-2 gene. We generated a largescale physical map of the FRDA region by pulsed-field gel electrophoresis analysis of genomic DNA and of three YAC clones derived from different libraries, and we constructed an uninterrupted cosmid contig spanning the FRDA locus. The cAMP-dependent protein kinase γ-catalytic subunit gene was identified within the critical FRDA interval, but it was excluded as candidate because of its biological properties and because of lack of mutations in FRDA patients. Six new polymorphic markers were isolated between FR2 (D9S886) and FR8 (D9S888), which were used for homozygosity analysis in a family in which parents of an affected child are distantly related. An ancient recombination involving the centromeric FRDA flanking markers had been previously demonstrated in this family. Homozygosity analysis indicated that the FRDA gene is localized in the telomeric 150 kb of the FR2-FR8 interval.  相似文献   

14.
The asebia (ab) mutation in the mouse is an autosomal recessive trait with hypoplastic sebaceous glands. As a first step toward cloning the ab gene, we report here the genetic mapping of the ab locus with respect to Chromosome 19 microsatellite markers. 644 backcross progeny were generated by mating (CAST/EiJ × DBA/1LacJ-ab2J/ab2J) F1 heterozygous females and parental ab2J/ab2J mutant males. Our results located the ab gene to an interval of 1.6 cM on mouse Chromosome 19 defined by flanking markers D19Mit11 and D19Mit53/D19Mit27, and identified a tightly linked polymorphic marker, D19Mit67, that co-segregates with the mutation in the backcross progeny examined. This places ab locus 4 cM distal to its present position as indicated in Mouse Genome Database at The Jackson Laboratory. We have also mapped a yeast artificial chromosome (YAC) contig in this locus interval which suggests the ab interval to be less than one megabase of DNA.  相似文献   

15.
16.
17.
18.
Recombination events that locate myotonic dystrophy distal to APOC2 on 19q   总被引:8,自引:0,他引:8  
We previously reported a recombination in an individual with myotonic dystrophy (DM) which placed the markers D19S19 and APOC2 on the same side of the DM locus. Haplotyping of this family with more recently characterized probes which are either tightly linked to DM or distal to the linkage group at q13.2 shows that the DM locus is distal to APOC2. This is confirmed by other recombinants where DM segregates with distal probes. Additional marker to marker recombinations in unaffected individuals are reported and support the order and orientation of the DM linkage group as pter-(INSR, LDLR,S9)-(S19,BCL3,APOC2)-(CKMM,DM)-(S22,+ ++PRKCG)-qter. The data presented here cannot determine whether DM is proximal or distal to CKMM. The consequences of this probe order for antenatal diagnosis and future research aiming to isolate the gene which is affected in DM are discussed.  相似文献   

19.
The recent cloning of cDNA encoding the Ca++ release channel (ryanodine receptor) of human sarcoplasmic reticulum has enabled us to use somatic cell hybrids to localize the ryanodine receptor gene (RYR) to the proximal long arm of human chromosome 19. Studies with additional hybrids containing deletions or translocations in chromosome 19 enabled us to localize RYR to 19q13.1 in a region distal to GPI/MAG and proximal to D19S18/DNF11. On the basis that the myotonic dystrophy (DM) locus maps near this region and that myotonia could result from a defect in the ryanodine receptor, we examined the linkage between the DM locus and RYR. Our results, showing several DM-RYR recombinants, rule out an RYR defect as the cause of DM. However, localization of RYR to a region of human chromosome 19 which is syntenic to an area of pig chromosome 6 containing the HAL gene responsible for porcine malignant hyperthermia supports the candidacy of RYR for this disorder.  相似文献   

20.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号