首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbon monoxide dehydrogenase from Rhodospirillum rubrum   总被引:5,自引:2,他引:3       下载免费PDF全文
The carbon monoxide dehydrogenase from the photosynthetic bacterium Rhodospirillum rubrum was purified over 600-fold by DEAE-cellulose chromatography, heat treatment, hydroxylapatite chromatography, and preparative scale gel electrophoresis. In vitro, this enzyme catalyzed a two-electron oxidation of CO to form CO2 as the product. The reaction was dependent on the addition of an electron acceptor. The enzyme was oxygen labile, heat stable, and resistant to tryptic and chymotryptic digestion. Optimum in vitro activity occurred at pH 10.0. A sensitive, hemoglobin-based assay for measuring dissolved CO levels is presented. The in vitro Km for CO was determined to be 110 microM. CO, through an unknown mechanism, stimulated hydrogen evolution in whole cells, suggesting the presence of a reversible hydrogenase in R. rubrum which is CO insensitive in vivo.  相似文献   

2.
Feng J  Lindahl PA 《Biochemistry》2004,43(6):1552-1559
The Ni-Fe-S-containing C-cluster of carbon monoxide dehydrogenases is the active site for catalyzing the reversible oxidation of CO to CO(2). This cluster can be stabilized in redox states designated C(ox), C(red1), C(int), and C(red2). What had until recently been the best-supported mechanism of catalysis involves a one-electron reductive activation of C(ox) to C(red1) and a catalytic cycle in which the C(red1) state binds and oxidizes CO, forming C(red2) and releasing CO(2). Recent experiments cast doubt on this mechanism, as they imply that activation requires reducing the C-cluster to a state more reduced than C(red1). In the current study, redox titration and stopped-flow kinetic experiments were performed to assess the previous results and conclusions. Problems in previous methods were identified, and related experiments for which such problems were eliminated or minimized afforded significantly different results. In contrast to the previous study, activation did not correlate with reduction of Fe-S clusters in the enzyme, suggesting that the potential required for activation was milder than that required to reduce these clusters (i.e., E(0)(act) > -420 mV vs SHE). Using enzyme preactivated in solutions that were poised at various potentials, lag phases were observed prior to reaching steady-state CO oxidation activities. Fits of the Nernst equation to the corresponding lag-vs-potential plot yielded a midpoint potential of -150 +/- 50 mV. This value probably reflects E degrees ' for the C(ox)/C(red1) couple, and it suggests that C(red1) is indeed active in catalysis.  相似文献   

3.
4.
S A Ensign  M R Hyman  P W Ludden 《Biochemistry》1989,28(12):4973-4979
The inhibition of purified carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide was investigated in both the presence and absence of CO and electron acceptor. The inhibition was a time-dependent process exhibiting pseudo-first-order kinetics under both sets of conditions. The true second-order rate constants for inhibition were 72.2 M-1 s-1 with both substrates present and 48.9 and 79.5 M-1 s-1, respectively, for the reduced and oxidized enzymes incubated with cyanide. CO partially protected the enzyme against inhibition after 25-min incubation with 100 microM KCN. Dissociation constants of 8.46 microM (KCN) and 4.70 microM (CO) were calculated for the binding of cyanide and CO to the enzyme. Cyanide inhibition was fully reversible under an atmosphere of CO after removal of unbound cyanide. N2 was unable to reverse the inhibition. The competence of nickel-deficient (apo) CO dehydrogenase to undergo activation by NiCl2 was unaffected by prior incubation with cyanide. Cyanide inhibition of holo-CO dehydrogenase was not reversed by addition of NiCl2. 14CN- remained associated with holoenzyme but not with apoenzyme through gel filtration chromatography. These findings suggest that cyanide is a slow-binding, active-site-directed, nickel-specific, reversible inhibitor of CO dehydrogenase. We propose that cyanide inhibits CO dehydrogenase by being an analogue of CO and by binding through enzyme-bound nickel.  相似文献   

5.
Methyl viologen-oxidized carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum exhibits complex EPR. Comparison to EPR of oxidized apo-CODH (CODH from which Ni is lacking) leads to the identification of signals whose intensity is correlated with the presence of Ni. 61Ni labeling observably broadens the sharpest feature of these signals, as does 57Fe. R. rubrum CODH thus contains a cluster containing both Ni and Fe. The EPR associated with this cluster is unlike any EPR previously attributed to Ni-containing prosthetic groups in other CODH enzymes or Ni-containing hydrogenases. The CO-analogue, CN-, perturbs the EPR signals that are attributed to the Ni-Fe species.  相似文献   

6.
A 3.7-kb DNA region encoding part of the Rhodospirillum rubrum CO oxidation (coo) system was identified by using oligonucleotide probes. Sequence analysis of the cloned region indicated four complete or partial open reading frames (ORFs) with acceptable codon usage. The complete ORFs, the 573-bp cooF and the 1,920-bp cooS, encode an Fe/S protein and the Ni-containing carbon monoxide dehydrogenase (CODH), respectively. The four 4-cysteine motifs encoded by cooF are typical of a class of proteins associated with other oxidoreductases, including formate dehydrogenase, nitrate reductase, dimethyl sulfoxide reductase, and hydrogenase activities. The R. rubrum CODH is 67% similar to the beta subunit of the Clostridium thermoaceticum CODH and 47% similar to the alpha subunit of the Methanothrix soehngenii CODH; an alignment of these three peptides shows relatively limited overall conservation. Kanamycin cassette insertions into cooF and cooS resulted in R. rubrum strains devoid of CO-dependent H2 production with little (cooF::kan) or no (cooS::kan) methyl viologen-linked CODH activity in vitro, but did not dramatically alter their photoheterotrophic growth on malate in the presence of CO. Upstream of cooF is a 567-bp partial ORF, designated cooH, that we ascribe to the CO-induced hydrogenase, based on sequence similarity with other hydrogenases and the elimination of CO-dependent H2 production upon introduction of a cassette into this region. From mutant characterizations, we posit that cooH and cooFS are not cotranscribed. The second partial ORF starts 67 bp downstream of cooS and would be capable of encoding 35 amino acids with an ATP-binding site motif.  相似文献   

7.
The requirements for and kinetics of the activation of the nickel-deficient (apo) CO dehydrogenase from Rhodospirillum rubrum by exogenous nickel have been investigated. The activation is strictly dependent upon the presence of a low-potential one-electron reductant. Sodium dithionite and reduced methylviologen (E degrees' = -440 mV) are suitable reductants, whereas reduced indigo carmine (E degrees' = -125 mV) and the two-electron reductants sodium borohydride, NADH, and dithiothreitol are ineffective in stimulating activation. The midpoint potential for activation was observed at approximately -475 mV. The ability of a reductant to stimulate activation is correlated with the reduced state of the enzyme Fe4-S4 centers. The activation follows apparent first-order kinetics in a saturable fashion, yielding a rate constant of 0.157 min-1 at saturating concentration of nickel. The initial rate at which the enzyme is activated by NiCl2 is also a saturable process, yielding a dissociation constant (KD) of 755 microM for the initial association of nickel and enzyme. Cadmium(II), zinc(II), cobalt(II), and iron(II) are competitive inhibitors of nickel activation with inhibition constants of 2.44, 4.16, 175, and 349 microM, respectively. Manganese(II), calcium(II), and magnesium(II) exhibit no inhibition of activation.  相似文献   

8.
D-alpha-Hydroxyglutarate dehydrogenase of R. rubrum grown anaerobically in the light was partially purified and some properties were investigated. 1. The enzyme catalyze stoichiometrically the dehydrogenation reaction of D-alpha-hydroxyglutarate into alpha-oxoglutarate, coupled with the reduction of 2, 6-dichlorophenolindophenol. 2. Cytochrome c2, cytochrome c, and ferricyanide are effective as electron acceptors with the crude enzyme but not with the purified one, whereas NAD+ and NADP+ are completely ineffective. The enzyme is thought to play a role in the electron transport system of the organism. 3. D-alpha-Hydroxyglutarate is virtually the sole substrate for the enzyme. The apparent activity against L-alpha-hydroxyglutarate is presumed to be due to contamination of the L-isomer sample with the D-isomer. The enzyme shows barely detectable activity against both isomers of malate and virtually no activity against DL-lactate and glycolate. 4. Both isomers of malate and oxalate, which are presumably substrate analogues, inhibit the enzyme activity. 5. The enzyme is not an inducible enzyme but rather is a constitutive one for R. rubrum, unlike from the enzyme of Pseudomonas putida which is an inducible enzyme for the catabolism of lysine.  相似文献   

9.
Craft JL  Ludden PW  Brunold TC 《Biochemistry》2002,41(5):1681-1688
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum utilizes three types of Fe-S clusters to catalyze the reversible oxidation of CO to CO(2): a novel [Ni4Fe5S] active site (C cluster) and two distinct [4Fe4S] electron-transfer sites (B and D clusters). While recent X-ray data show the geometric arrangement of the five metal centers at the C cluster, electronic structures of the various [Ni4Fe5S] oxidation states remain ambiguous. These studies report magnetic circular dichroism (MCD), variable temperature, variable field MCD (VTVH MCD), and resonance Raman (rR) spectroscopic properties of the Fe-S clusters contained in Ni-deficient CODH. Essentially homogeneous sample preparations aided in the resolution of the reduced [4Fe4S](1+) (S = (1)/(2)) B cluster and the reduced Ni-deficient C cluster (denoted C, S > (1)/(2)) by MCD. The three Fe atoms derived from the [Ni3Fe4S] cubane component appear to dominate the reduced C cluster MCD spectrum, while the presence of a fourth Fe center can be inferred from the ground state spin. The same underlying MCD features present in Ni-deficient CODH spectra are also observed for Ni-containing CODH, suggesting that both proteins contain the same C cluster Fe-S component. Overlooked in all spectroscopic studies to date, the D cluster was confirmed by rR to be a typical [4Fe4S] site with cysteinyl coordination. Together, MCD and rR data show that the D cluster remains in the oxidized [4Fe4S](2+) (S = 0) state at potentials > or = -530 mV (versus SHE), thus exhibiting an unusually low redox potential for a standard [4Fe4S](2+/1+) electron-transfer site.  相似文献   

10.
M R Hyman  S A Ensign  D J Arp  P W Ludden 《Biochemistry》1989,28(17):6821-6826
Carbonyl sulfide (COS) has been investigated as a rapid-equilibrium inhibitor of CO oxidation by the CO dehydrogenase purified from Rhodospirillum rubrum. The kinetic evidence suggests that the inhibition by COS is largely competitive versus CO (Ki = 2.3 microM) and uncompetitive versus methylviologen as electron acceptor (Ki = 15.8 microM). The data are compatible with a ping-pong mechanism for CO oxidation and COS inhibition. Unlike the substrate CO, COS does not reduce the iron-sulfur centers of dye-oxidized CO dehydrogenase and thus is not an alternative substrate for the enzyme. However, like CO, COS is capable of protecting CO dehydrogenase from slow-binding inhibition by cyanide. A true binding constant (KD) of 2.2 microM for COS has been derived on the basis of the saturable nature of COS protection against cyanide inhibition. The ability of CO, CO2, COS, and related CO/CO2 analogues to reverse cyanide inhibition of CO dehydrogenase is also demonstrated. The kinetic results are interpreted in terms of two binding sites for CO on CO dehydrogenase from R. rubrum.  相似文献   

11.
Succinate dehydrogenase has been solubilized from R. rubrum chromatophores with the use of chaotropic agents, and purified approximately 80-fold. The preparation (SDr) contains 8 g-atoms of iron per mole of flavin, and has a turnover number of approximately 4000 (moles succinate oxidized by ferricyanide or phenazine methosulfate/mole of flavin/min at 38 °C). Its absorption and EPR spectra are similar to those of bovine heart succinate dehydrogenase. SDr can cross-interact with the bovine heart electron-transport system (alkali-inactivated ETP) and reconstitute succinoxidase activity with an efficiency comparable to the reconstitution activity of purified bovine heart succinate dehydrogenase. Preliminary results suggest that SDr has a molecular weight of approximately 85,000, and that it is composed of a flavoprotein subunit with a molecular weight of approximately 60,000, plus a second subunit (possibly an iron-sulfur protein) with a molecular weight of approximately 25,000.  相似文献   

12.
The NADP$-specific isocitrate dehydrogenase was partially purifiedfrom photosynthetically-grown Rhodospirillum rubrum. The pHoptimum is between 7.5 and 9.0 in phosphate buffer. The apparentKm is 3.1x10–5 M for isocitrate, 5.1x10–5 M forNADP$, 1.7x10–5 M for manganese, 1.5x10–4 M formagnesium, and 3.5x10–3 M for inorganic orthophosphate.Arsenate exerts a slight inhibition. The Q10 between 17.5°Cand 40°C is 1.62, and the energy of activation at 25°Cis 9.74 Kcal/mole. Glyoxylate and oxalacetate cause concertedinhibition of the enzyme activity. Various nucleotides inhibitthe activity. The kinetics of inhibition by ATP was found tobe mixed type with respect to NADP$ and isocitrate, the Ki valuesbeing 1.17x10–3 M and 1.10x10–3 M respectively.The inhibition between ATP and orthophosphate is competitivewith a Ki of 10–4M. Thiol binding reagents are inhibitory;this inhibition is reversed by cysteine or reduced glutathione. (Received October 1, 1971; )  相似文献   

13.
Carbon monoxide-dependent growth of Rhodospirillum rubrum.   总被引:4,自引:3,他引:1       下载免费PDF全文
Under dark, anaerobic conditions in the presence of sufficient nickel, Rhodospirillum rubrum grows with a doubling time of under 5 h by coupling the oxidation of CO to the reduction of H+ to H2. CO-dependent growth of R. rubrum UR294, bearing a kanamycin resistance cassette in cooC, depends on a medium nickel level ninefold higher than that required for optimal growth of coo+ strains.  相似文献   

14.
Carbon monoxide dehydrogenase (CO dehydrogenase) from Rhodospirillum rubrum was shown to be an oxygen-sensitive, nickel, iron-sulfur, and zinc-containing protein that was induced by carbon monoxide (CO). The enzyme was purified 212-fold by heat treatment, ion-exchange, and hydroxylapatite chromatography and preparative gel electrophoresis. The purified protein, active as a monomer of Mr = 61,800, existed in two forms that were comprised of identical polypeptides and differed in metal content. Form 1 comprised 90% of the final activity, had a specific activity of 1,079 mumol CO oxidized per min-1 mg-1, and contained 7 iron, 6 sulfur, 0.6 nickel, and 0.4 zinc/monomer. Form 2 had a lower specific activity (694 mumol CO min-1 mg-1) and contained 9 iron, 8 sulfur, 1.4 nickel, and 0.8 zinc/monomer. Reduction of either form by CO or dithionite resulted in identical, rhombic ESR spectra with g-values of 2.042, 1.939, and 1.888. Form 2 exhibited a 2-fold higher integrated spin concentration, supporting the conclusion that it contained an additional reducible metal center(s). Cells grown in the presence of 63NiCl2 incorporated 63Ni into CO dehydrogenase. Although nickel was clearly present in the protein, it was not ESR-active under any conditions tested. R. rubrum CO dehydrogenase was antigenically distinct from the CO dehydrogenases from Methanosarcina barkeri and Clostridium thermoaceticum.  相似文献   

15.
S A Ensign  D Bonam  P W Ludden 《Biochemistry》1989,28(12):4968-4973
The role of nickel in CO oxidation and electron flow was investigated in carbon monoxide dehydrogenase from Rhodospirillum rubrum. The Fe-S centers of oxidized, nickel-containing (holo) CO dehydrogenase were completely reduced within 1 min of exposure to CO. The Fe-S centers of oxidized, nickel-deficient (apo) CO dehydrogenase were not reduced during a 35-min incubation in the presence of CO. Apo-CO dehydrogenase Fe-S centers were reduced by dithionite. The Fe-S centers of cyanide-inhibited, holo-CO dehydrogenase were not reduced in the presence of CO but were reduced by dithionite. Treatment of apo-CO dehydrogenase with cobalt(II), zinc(II), and iron(II) resulted in association of these metal ions (0.70, 1.2, and 0.86 mol of M2+/mol, respectively) with the protein but no increase in specific activity. Purified holo-CO dehydrogenase contained 1.1 mol of nickel/mol of protein and could not be further activated upon addition of NiCl2, suggesting the presence of one catalytic nickel site on the enzyme. The M2+-treated enzymes could not be further activated by addition of NiCl2 as opposed to the untreated apoenzyme, whose activity was stimulated 50-100-fold to the level of holoenzyme upon addition of NiCl2. When placed under CO, the Fe-S centers of the cobalt-treated enzyme became reduced over a 35-min time course, as opposed to the zinc- and iron-treated enzymes, which remained oxidized. We conclude that nickel, or an appropriate nickel analogue in the nickel site, mediates electron flow from CO to the Fe-S centers of CO dehydrogenase.  相似文献   

16.
J Heo  C R Staples  P W Ludden 《Biochemistry》2001,40(25):7604-7611
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum catalyzes both the oxidation of CO and the reduction of CO(2). Studies of the redox dependence of CO(2) reduction by R. rubrum CODH show that (1) CODH is unable to catalyze CO(2) reduction at potentials greater than -300 mV; (2) the maximum activity is observed at potentials less than -480 mV; and (3) the midpoint potential (E(m)) of the transition from minimum to maximum CO(2) reduction activity occurs at approximately -339 mV. These results indicate that the C(red1) state of R. rubrum CODH (E(m) = -110 mV; g(zyx)() = 2.03, 1.88, 1.71) is not competent to reduce CO(2). Nernst analyses suggest that the reduction of CODH from the C(red1) state to the CO(2)-reducing form (C(unc), g(zyx)() = 2.04, 1.93, 1.89; E < approximately -300 mV) of the enzyme is a one-electron process. For the entire redox range, viologens stimulate CO(2) reduction by CODH more than 50-fold, and it is proposed that viologens accelerate the redox equilibration of redox buffers and [Fe(4)S(4)](B) during catalysis.  相似文献   

17.
Summary Glutathione reductase (NADPH1: glutathione oxidoreductase (EC 1.6.4.2) was purified 70 fold from Rhodospirillum rubrum by ammonium sulfate fractionation, gelfiltration with Sephadex and chromatography on DEAE-cellulose. The optimum pH of the reaction is 7.5–8.2 K m values of 8.4×10–6 M for NADPH and 5.8×10–5 M for GSSG were determined. The kinetic data indicate a bisubstrate reaction mechanism. The prosthetic group is FAD (K m 1.1×10–6M). The flavin can be completely dissociated from the enzyme, and 70% of the original activity can subsequently be restored by FAD. The molecular weight was determined with a calibrated column Sephadex G-200 and found to be approximately 63,000. The enzyme is inhibited reversibly by several anions. With iodide the inhibition is competitive with respect to GSSG. Sulfhydryl reagents (N-ethylmaleinimide, p-chlormercuribenzoate) strongly inhibit the enzyme when it is present in the reduced state. The enzyme is reduced by low concentrations of NADPH and by higher concentrations of NADH. GSSG protects the enzyme against this inhibition. The enzyme is reversibly inhibited by incubation with NADPH or NADH.
Zusammenfassung Glutathionreduktase wurde aus Rhodospirillum rubrum mit Ammoniumsulfatfraktionierung, Gelfiltration mit Sephadex und Chromatographie an DEAE-Cellulose 70 fach angereichert. Das pH Optimum der Reaktion liegt bei 7,5–8,2. K m -Werte: 8,4·10–6 M für NADPH und 5,8·10–5 M für GSSG. Aus den kinetischen Daten ergibt sich für das Enzym ein Bisubstratreaktionsmechanismus. Die prosthetische Gruppe ist FAD (K m 1,1·10–6 M). Das Flavin kann vollständig vom Enzymprotein abdissoziiert werden, durch erneute Zugabe von FAD können etwa 70% der ursprünglichen Aktivität zurückerhalten werden. Das Molekulargewicht, bestimmt durch Gelfiltration mit einer kalibrierten Säule Sephadex G-200, ist ca. 63000. Das Enzym wird durch verschiedene Anionen reversibel gehemmt. Bei J ist die Hemmung kompetitiv mit GSSG. Sulfhydrylreagentien (N-Äthylmaleinimid und p-Chlomercuribenzoat) sind potente Inhibitoren, wenn das Enzym im reduzierten Zustand vorliegt. Das Enzym kann bereits durch niedrige Konzentrationen an NADPH sowie durch höhere Konzentrationen an NADH reduziert werden. GSSG schützt das Enzymprotein gegen die Hemmung durch Sulfhydryl-reagentien. Das Enzym wird durch Inkubation mit NADPH und NADH reversibel gehemmt.
  相似文献   

18.
19.
20.
Summary A preliminary study of formate production from CO plus H2O using the intact cells ofMethanosarcina barkeri was conducted. Formate production from CO gas required the participation of three enzymes, CO dehydrogenase, hydrogenase and formate dehydrogenase. Hypophosphite inhibited formate formation from CO plus H2O by about 80%. In this system, 9 g/l of formate could be obtained from CO gas after 48 h of incubation at 37°C, pH 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号