首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. The cDNA of the full-length human mitochondrial 2,4-dienoyl-CoA reductase was previously cloned as pUC18::DECR. PCR methodologies were used to subclone the genes encoding various truncated human mitochondrial 2,4-dienoyl-CoA reductases from pUC18::DECR with primers that were designed to add six continuous histidine codons to the 3' or 5' primer. The PCR products were inserted into pLM1 expression vectors and overexpressed in Escherichia coli. A highly active truncated soluble protein was expressed and purified with a nickel HiTrap chelating metal affinity column to apparent homogeneity based on Coomassie blue-stained SDS-PAGE. The molecular weight of the protein subunit was 34 kDa. The purified protein is highly stable at room temperature, which makes it potentially valuable for protein crystallization. KM of 26.5 +/- 3.8 microM for 2,4-hexadienoyl-CoA, KM of 6.22 +/- 2.0 microM for 2,4-decadienoyl-CoA, and KM of 60.5 +/- 19.7 microM for NADPH, as well as Vmax of 7.78 +/- 1.08 micromol/min/mg for 2,4-hexadienoyl-CoA and Vmax of 0.74 +/- 0.07 micromol/min/mg for 2,4-decadienoyl-CoA were determined on kinetic study of the purified protein. The one-step purification of the highly active human mitochondrial 2,4-dienoyl-CoA reductase will greatly facilitate further investigation of this enzyme through site-directed mutagenesis and enzyme catalyzed reactions with substrate analogs as well as protein crystallization for solving its three-dimensional structure.  相似文献   

2.
1. Dye-ligand chromatography using immobilized Cibacron blue F3GA (blue Sepharose CL-6B) and Procion red HE3B (Matrex gel red A) as matrices and general ligand chromatography employing immobilized 2',5'-ADP (2',5'-ADP-Sepharose 4B) and immobilized 3',5'-ADP (3',5'-ADP-Agarose) were employed for purification of NADPH-dependent 2-enoyl-CoA reductase and 2,4-dienoyl-CoA reductase from bovine liver (formerly called 4-enoyl-CoA reductase [Kunau, W. H. and Dommes, P. (1978) Eur. J. Biochem. 91, 533-544], as well as 2,4-dienoyl-CoA reductase from Escherichia coli. 2. The NADPH-dependent 2-enoyl-CoA reductase from bovine liver mitochondria was separated from 2,4-dienoyl-CoA reductase by dye-ligand chromatography (Matrex gel red A/KCl gradient) as well as by general ligand affinity chromatography (2',5'-ADP-Sepharose 4B/NADP gradient). The enzyme was obtained in a highly purified form. 3. The NADPH-dependent 2,4-dienoyl-CoA reductase from bovine liver mitochondria was purified to homogeneity using blue Sepharose CL-6B, Matrex gel red A, and 2',5'-ADP-Sepharose 4B chromatography. 4. The bacterial 2,4-dienoyl-CoA reductase was completely purified by ion-exchange chromatography on DEAE-cellulose followed by a single affinity chromatography step employing 2',5'-ADP-Sepharose 4B and biospecific elution from the column with a substrate, trans,trans-2,4-decadienoyl-CoA. 5. The application of dye-ligand and general ligand affinity chromatography for purification of NADPH-dependent 2,4-dienoyl-CoA reductases taking part in the beta-oxidation of unsaturated fatty acids is discussed. It is concluded that making use of coenzyme specificity for binding and substrate specificity for elution is essential for obtaining homogeneous enzyme preparations.  相似文献   

3.
Fillgrove KL  Anderson VE 《Biochemistry》2001,40(41):12412-12421
The chemical mechanism of the 2,4-dienoyl-CoA reductase (EC 1.3.1.34) from rat liver mitochondria has been investigated. This enzyme catalyzes the NADPH-dependent reduction of 2,4-dienoyl-coenzyme A (CoA) thiolesters to the resulting trans-3-enoyl-CoA. Steady-state kinetic parameters for trans-2,trans-4-hexadienoyl-CoA and 5-phenyl-trans-2,trans-4-pentadienoyl-CoA were determined and demonstrated that the dienoyl-CoA and NADPH bind to the 2,4-dienoyl-CoA reductase via a sequential kinetic mechanism. Kinetic isotope effect studies and the transient kinetics of substrate binding support a random order of nucleotide and dienoyl-CoA addition. The large normal solvent isotope effects on V/K ((D)(2)(O)V/K) and V ((D)(2)(O)V) for trans-2,trans-4-hexadienoyl-CoA reduction indicate that a proton transfer step is rate limiting for this substrate. The stability gained by conjugating the phenyl ring to the diene in PPD-CoA results in the reversal of the rate-determining step, as evidenced by the normal isotope effects on V/K(CoA) ((D)V/K(CoA)) and V/K(NADPH) ((D)V/K(NADPH)). The reversal of the rate-determining step was supported by transient kinetics where a burst was observed for the reduction of trans-2,trans-4-hexadienoyl-CoA but not for 5-phenyl-trans-2,trans-4-pentadienoyl-CoA reduction. The chemical mechanism is stepwise where hydride transfer from NADPH occurs followed by protonation of the observable dienolate intermediate, which has an absorbance maximum at 286 nm. The exchange of the C alpha protons of trans-3-decenoyl-CoA, catalyzed by the 2,4-dienoyl-CoA reductase, in the presence of NADP(+) suggests that formation of the dienolate is catalyzed by the enzyme active site.  相似文献   

4.
Peroxisomal 2,4-dienoyl-CoA reductase was purified from rat liver to homogeneity. The subunit molecular weight of 33,000 was determined by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. The native molecular weight close to 120,000 was estimated by gel filtration on Sephacryl S-300 Superfine. trans-2, trans-4-Decadienoyl-CoA was the most active substrate among the dienoyl-CoA's of various chain lengths. The total activity of peroxisomal 2,4-dienoyl-CoA reductase exceeded that of the mitochondrial one even in the livers of rats fed with a standard diet. Furthermore both reductases were remarkably and coordinately induced in the livers of clofibrate-treated rats.  相似文献   

5.
6.
Fatty acid catabolism by beta-oxidation mainly occurs in mitochondria and to a lesser degree in peroxisomes. Poly-unsaturated fatty acids are problematic for beta-oxidation, because the enzymes directly involved are unable to process all the different double bond conformations and combinations that occur naturally. In mammals, three accessory proteins circumvent this problem by catalyzing specific isomerization and reduction reactions. Central to this process is the NADPH-dependent 2,4-dienoyl-CoA reductase. We present high resolution crystal structures of human mitochondrial 2,4-dienoyl-CoA reductase in binary complex with cofactor, and the ternary complex with NADP(+) and substrate trans-2,trans-4-dienoyl-CoA at 2.1 and 1.75 A resolution, respectively. The enzyme, a homotetramer, is a short-chain dehydrogenase/reductase with a distinctive catalytic center. Close structural similarity between the binary and ternary complexes suggests an absence of large conformational changes during binding and processing of substrate. The site of catalysis is relatively open and placed beside a flexible loop thereby allowing the enzyme to accommodate and process a wide range of fatty acids. Seven single mutants were constructed, by site-directed mutagenesis, to investigate the function of selected residues in the active site thought likely to either contribute to the architecture of the active site or to catalysis. The mutant proteins were overexpressed, purified to homogeneity, and then characterized. The structural and kinetic data are consistent and support a mechanism that derives one reducing equivalent from the cofactor, and one from solvent. Key to the acquisition of a solvent-derived proton is the orientation of substrate and stabilization of a dienolate intermediate by Tyr-199, Asn-148, and the oxidized nicotinamide.  相似文献   

7.
Mitochondrial 2,4-dienoyl-CoA reductase is a key enzyme for the beta-oxidation of unsaturated fatty acids. Sequence alignment indicates that there are five highly conserved acidic residues, one of which might act as a proton donor. We constructed five mutant expression plasmids of human mitochondrial 2,4-dienoyl-CoA reductase using site-directed mutagenesis. Mutant proteins were overexpressed in Escherichia coli and purified with a nickel metal affinity column. Studies of these mutant proteins were carried out, and the proton donor is likely to be E276. Three substrate analogs were synthesized and characterized. Two analogs, 2-fluoro-2,4-octadienoyl-CoA and 5-methyl-2,4-hexadienoyl-CoA, were substrates of the enzyme. Another analog, 3-furan-2-yl-acrylyl-CoA, was not a substrate, but a competitive inhibitor of the enzyme. These studies increased our understanding of human mitochondrial 2,4-dienoyl-CoA reductase.  相似文献   

8.
2,4-Dienoyl-CoA reductase has been purified to homogeneity from Candida lipolytica cultivated in the presence of linoleic acid. The native enzyme had a molecular weight close to 360,000 as estimated by gel filtration on Sepharose CL-4B, whereas the subunit molecular weight estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 33,000. The purified 2,4-dienoyl-CoA reductase from C. lipolytica gave a single precipitin line with antibodies raised against the purified enzyme from C. lipolytica. The general properties of the 2,4-dienyl-CoA reductase from C. lipolytica were examined. The enzyme had optimal pH at 6.5 and was inactivated by heat treatment at 50 degrees C for 10 min. trans-2,trans-4-Octadienoyl-CoA was the most active substrate of the dienoyl-CoA esters examined.  相似文献   

9.
The mitochondrial metabolism of unsaturated fatty acids with conjugated double bonds at odd-numbered positions, e.g. 9-cis, 11-trans-octadecadienoic acid, was investigated. These fatty acids are substrates of beta-oxidation in isolated rat liver mitochondria and hence are expected to yield 5,7-dienoyl-CoA intermediates. 5, 7-Decadienoyl-CoA was used to study the degradation of these intermediates. After introduction of a 2-trans-double bond by acyl-CoA dehydrogenase or acyl-CoA oxidase, the resultant 2,5, 7-decatrienoyl-CoA can either continue its pass through the beta-oxidation cycle or be converted by Delta3,Delta2-enoyl-CoA isomerase to 3,5,7-decatrienoyl-CoA. The latter compound was isomerized by a novel enzyme, named Delta3,5,7,Delta2,4, 6-trienoyl-CoA isomerase, to 2,4,6-decatrienoyl-CoA, which is a substrate of 2,4-dienoyl-CoA reductase (Wang, H.-Y. and Schulz, H. (1989) Biochem. J. 264, 47-52) and hence can be completely degraded via beta-oxidation. Delta3,5,7,Delta2,4,6-Trienoyl-CoA isomerase was purified from pig heart to apparent homogeneity and found to be a component enzyme of Delta3,5,Delta2,4-dienoyl-CoA isomerase. Although the direct beta-oxidation of 2,5,7-decatrienoyl-CoA seems to be the major pathway, the degradation via 2,4,6-trienoyl-CoA makes a significant contribution to the total beta-oxidation of this intermediate.  相似文献   

10.
cDNA cloning of rat liver 2,4-dienoyl-CoA reductase   总被引:3,自引:0,他引:3  
cDNA clones of 2,4-dienoyl-CoA reductase were isolated from rat liver cDNA libraries constructed in phages lambda gt11 and lambda gt10. Hybrid selected translation analysis revealed that 2,4-dienoyl-CoA reductase was translated as a polypeptide with a molecular weight of about 36,000, which was about 3,000 molecular weight units larger than mature reductase. Sequencing analysis revealed that the open reading frame encoded a polypeptide consisting of 335 amino acid residues (predicted molecular weight = 36,132), which contained an N-terminal extension peptide of 34 amino acid residues (presequence) in addition to the mature enzyme. Thus, 2,4-dienoyl-CoA reductase is synthesized as a larger precursor polypeptide, and the N-terminal extension peptide may be acting as the mitochondrial import signal.  相似文献   

11.
The mitochondrial beta-oxidation of octa-2,4,6-trienoic acid was studied with the aim of elucidating the degradation of unsaturated fatty acids with conjugated double bonds. Octa-2,4,6-trienoic acid was found to be a respiratory substrate of coupled rat liver mitochondria, but not of rat heart mitochondria. Octa-2,4,6-trienoyl-CoA, the product of the inner-mitochondrial activation of the acid, was chemically synthesized and its degradation by purified enzymes of beta-oxidation was studied spectrophotometrically and by use of h.p.l.c. This compound is a substrate of NADPH-dependent 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34), which facilitates its further beta-oxidation. The product obtained after the NADPH-dependent reduction of octa-2,4,6-trienoyl-CoA and one round of beta-oxidation was hex-4-enoyl-CoA, which can be completely degraded via beta-oxidation. It is concluded that polyunsaturated fatty acids with two conjugated double bonds extending from even-numbered carbon atoms can be completely degraded via beta-oxidation because their presumed 2,4,6-trienoyl-CoA intermediates are substrates of 2,4-dienoyl-CoA reductase.  相似文献   

12.
Fillgrove KL  Anderson VE 《Biochemistry》2000,39(23):7001-7011
The stereochemical course of reduction of dienoyl-coenzyme A (CoA) thiolesters catalyzed by the 2,4-dienoyl-CoA reductase from rat liver mitochondria was investigated. The configuration of the double bond in the 3-enoyl-CoA products was determined by (1)H NMR, and experiments to determine the stereochemical course of reduction at Calpha and Cdelta by use of 4-(2)H-labeled beta-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), were conducted in H(2)O and D(2)O. Defining the diastereoselectivity of the reaction, catalyzed by the Delta(3),Delta(2)-enoyl-CoA isomerase, facilitated the determination of the stereochemical course of reduction by 2, 4-dienoyl-CoA reductase. The absence of solvent exchange of the proton transferred during the Delta(3),Delta(2)-enoyl-CoA isomerase catalyzed equilibration of trans-2- and trans-3-enoyl-CoAs, coupled with the strong sequence homology to enoyl-CoA hydratase support the intramolecular suprafacial transfer of the pro-2R proton of trans-3-enoyl-CoA to the pro-4R position of trans-2-enoyl-CoA. The results indicate that the configuration of the double bond of the 3-enoyl-CoA product is trans and that a general acid-catalyzed addition of a solvent derived proton/deuteron occurs on the si face at Calpha of the dienoyl-CoA. The addition of the pro-4S hydrogen from NADPH occurs on the si face at Cdelta of trans-2, cis-4-dienoyl-CoA and on the re face at Cdelta of trans-2, trans-4-dienoyl-CoA. The stereochemical course of reduction of InhA, an enoyl-thiolester reductase from Mycobacterium tuberculosis, was also determined by use of ?4-(2)HNADH in D(2)O. The reduction of trans-2-octenoyl-CoA catalyzed by InhA resulted in the syn addition of (2)H(2) across the double bond yielding (2R,3S)-?2, 3-(2)H(2)?ctanoyl-CoA. In the crystal structure of the InhA ternary complex, the residue donating the proton to Calpha could not be identified ?Rozwarski, D. A., Vilcheze, C., Sugantino, M., Bittman, R., and Sacchettini, J. C. (1999) J. Biol. Chem. 274, 15582-15589. The current results place further restrictions on the source of the proton and suggest the reduction is stepwise.  相似文献   

13.
Evidence showing that some unsaturated fatty acids, and in particular docosahexaenoic acid, can be powerful inhibitors of mitochondrial beta-oxidation is presented. This inhibitory property is, however, also observed with the cis- and trans-isomers of the C18:1(16) acid. Hence it is probably the position of the double bond(s), and not the degree of unsaturation, which confers the inhibitory property. It is suggested that the inhibitory effect is caused by accumulation of 2,4-di- or 2,4,7-tri-enoyl-CoA esters in the mitochondrial matrix. This has previously been shown to occur with these fatty acids, in particular when the supply of NADPH was limiting 2,4-dienoyl-CoA reductase (EC 1.3.1.-) activity [Hiltunen, Osmundsen & Bremer (1983) Biochim. Biophys. Acta 752, 223-232]. Liver mitochondria from streptozotocin-diabetic rats showed an increased ability to beta-oxidize 2,4-dienoyl-CoA-requiring acylcarnitines. Docosahexaenoylcarnitine was also found to be less inhibitory at lower concentrations with incubation under coupled conditions. With uncoupling conditions there was little difference between mitochondria from normal and diabetic rats in these respects. This correlates with a 5-fold stimulation of 2,4-dienoyl-CoA reductase activity found in mitochondria from streptozotocin-diabetic rats.  相似文献   

14.
Mitochondrial 2-enoyl-CoA reductase from bovine liver was purified and characterized. A simple three-step purification was developed, involving ion-exchange chromatography to separate the bulk of the NADPH-dependent 2,4-dienoyl-CoA reductase, followed by chromatography on Blue Sepharose and adenosine 2',5'-bisphosphate-Sepharose. Homogeneous enzyme with a subunit Mr of 35 500 is obtained in 35% yield. The Mr of the native enzyme, determined by three different methods, yielded values that suggest that the enzyme is dimeric. NADPH is required as cofactor, and cannot be replaced by NADH. The activity of the purified enzyme towards 2-trans-double bonds in 2-monoene and 2,4-diene structures was investigated. 2-Enoyl-CoA reductase reduced the double bonds in a series of 2-trans-monoenoyl-CoA esters with different chain lengths, but did not exhibit significant activity towards 2-trans-double bonds of 2,4-dienoyl-CoA esters. This result is discussed in the light of analogous observations with enoyl-CoA hydratase.  相似文献   

15.
The beta-oxidation of 2-trans,4-cis-decadienoyl-CoA, an assumed metabolite of linoleic acid, by purified enzymes from mitochondria, peroxisomes, and Escherichia coli was studied. 2-trans,4-cis-Decadienoyl-CoA is an extremely poor substrate of the beta-oxidation system reconstituted from mitochondrial enzymes. The results of a kinetic evaluation lead to the conclusion that in mitochondria 2-trans,4-cis-decadienoyl-CoA is not directly beta-oxidized, but instead is reduced by NADPH-dependent 2,4-dienoyl-CoA reductase prior to its beta-oxidation. Hence, the mitochondrial beta-oxidation of 2-trans,4-cis-decadienoyl-CoA does not require 3-hydroxyacyl-CoA epimerase, a conclusion which agrees with the finding that 3-hydroxyacyl-CoA epimerase is absent from mitochondria (Chu, C.-H., and Schulz, H. (1985) FEBS Lett. 185, 129-134). However, 2-trans,4-cis-decadienoyl-CoA can be slowly oxidized by the bifunctional beta-oxidation enzyme from rat liver peroxisomes, as well as by the fatty acid oxidation complex from E. coli. The observed rates of 2-trans,4-cis-decadienoyl-CoA degradation by these two multi-functional proteins were significantly higher than the values calculated according to steady-state velocity equations derived for coupled enzyme reactions. This is attributed to the direct transfer of L-3-hydroxy-4-cis-decenoyl-CoA from the active site of enoyl-CoA hydratase to that of 3-hydroxyacyl-CoA dehydrogenase on the same protein molecule. All observations together lead to the suggestion that the chain shortening of 2-trans,4-cis-decadienoyl-CoA in peroxisomes and in E. coli occurs simultaneously by two different pathways. The major pathway involves the NADPH-dependent 2,4-dienoyl-CoA reductase, whereas 3-hydroxyacyl-CoA epimerase functions in the metabolism of D-3-hydroxyoctanoyl-CoA which is formed via the minor pathway.  相似文献   

16.
The beta-oxidation of saturated fatty acids in Saccharomyces cerevisiae is confined exclusively to the peroxisomal compartment of the cell. Processing of mono- and polyunsaturated fatty acids with the double bond at an even position requires, in addition to the basic beta-oxidation machinery, the contribution of the NADPH-dependent enzyme 2,4-dienoyl-CoA reductase. Here we show by biochemical cell fractionation studies that this enzyme is a typical constituent of peroxisomes. As a consequence, the beta-oxidation of mono- and polyunsaturated fatty acids with double bonds at even positions requires stoichiometric amounts of intraperoxisomal NADPH. We suggest that NADP-dependent isocitrate dehydrogenase isoenzymes function in an NADP redox shuttle across the peroxisomal membrane to keep intraperoxisomal NADP reduced. This is based on the finding of a third NADP-dependent isocitrate dehydrogenase isoenzyme, Idp3p, next to the already known mitochondrial and cytosolic isoenzymes, which turned out to be present in the peroxisomal matrix. Our proposal is strongly supported by the observation that peroxisomal Idp3p is essential for growth on the unsaturated fatty acids arachidonic, linoleic and petroselinic acid, which require 2, 4-dienoyl-CoA reductase activity. On the other hand, growth on oleate which does not require 2,4-dienoyl-CoA reductase, and NADPH is completely normal in Deltaidp3 cells.  相似文献   

17.
Incorporation of deuterium atoms from deuterium-labeled NADPH and 2H2O during the reaction catalyzed by 2,4-dienoyl-CoA reductase of Escherichia coli (E. coli) was investigated. When trans-2,cis-4-decadienoyl-CoA was incubated with 4R- or 4S-[4-2H1]NADPH in the presence of purified 2,4-dienoyl-CoA reductase, no deuterium was detected in the reaction product by gas chromatography-mass spectrometry after derivatization to its pyrrolidine amide. On the other hand, when the dienoyl-CoA was incubated in the presence of NADPH and the reductase in 2H2O, two deuterium atoms were incorporated: One deuterium atom was located at the C-4 position of trans-2-decenoate, and the other at the C-5 position. The UV and shorter wavelengths of the visible spectrum of the reductase solution revealed that the reductase contained flavin as a prosthetic group. Therefore it is considered that a hydrogen atom of NADPH was first transferred to the flavin moiety of the reductase, and then the hydrogen atom was rapidly exchanged for one in the medium before its direct transfer to the substrate.  相似文献   

18.
The aim of this work was to determine the subcellular location of mammalian 2,4-dienoyl-CoA reductase, a key enzyme for degradation of polyunsaturated fatty acids by beta-oxidation. The enzyme was purified according to Kimura et al. (J Biochem 96:1463, 1984), and antibodies were raised in rabbits. Monospecific antibodies were obtained via purification on an affinity column. Immunoblotting of isolated rat liver mitochondria and peroxisomes with the monospecific reductase antibody showed that the antigen was located only in mitochondria. Immunocytochemical experiments with liver tissue, using the protein A-gold labeling technique, confirmed this result. The similarity of their characteristics suggests that the purified reductases described in the literature are the same isoenzyme. Consequently, since the rat enzyme was localized here to the mitochondria, purification and characterization of peroxisomal mammalian reductases remain to be achieved in the future. In addition, a significant induction also of mitochondrial reductase by clofibrate was observed in the immunoblotting experiments.  相似文献   

19.
Fat-degrading cotyledons from cucumber seedlings were investigated with respect to the enzymes metabolizing cis-unsaturated fatty acids. Isolated glyoxysomes degrade linoleic acid, the dominating fatty acid in the storage tissue of the seed. Glyoxysomes were shown to be the sole intracellular site of enzymes responsible for the degradation of unsaturated fatty acids. All three auxiliary enzyme activities discussed for the degradation of polyunsaturated fatty acids, 2,4-dienoyl-CoA reductase, enoyl-CoA isomerase, and 3-hydroxyacyl-CoA epimerase were localized within the matrix of glyoxysomes. They were not found in mitochondria. Separation of glyoxysomal matrix proteins on CM-cellulose revealed that epimerase activity was attributable to the multifunctional protein and also to another protein which apparently exhibited no other beta-oxidation activity. Furthermore, on the basis of the high epimerase activity present in glyoxysomes compared to a much lower 2,4-dienoyl-CoA reductase activity, the metabolism of unsaturated fatty acids via delta 2-cis-enoyl-CoA is considered as alternative to the reductase-dependent pathway.  相似文献   

20.
2,4-Dienoyl-CoA reductases, enzymes of the beta-oxidation of unsaturated fatty acids which were purified from bovine liver and oleate-induced cells of Escherichia coli, revealed very similar substrate specificities but distinctly different molecular properties. The subunit molecular weights, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 32,000 and 73,000 for the mammalian and the bacterial enzyme, respectively. The native molecular weights, calculated from sedimentation coefficients and Stokes radii yielded 124,000 for the bovine liver and 70,000 for the bacterial enzyme. Thus, bovine liver 2,4-dienoyl-CoA reductase is a tetramer consisting of four identical subunits. The E. coli 2,4-dienoyl-CoA reductase, however, possesses a monomeric structure. The latter enzyme contains 1 mol of FAD/mol of enzyme, whereas the former reductase is not a flavoprotein. The bovine liver reductase reduced 2-trans, 4-cis- and 2-trans,4-trans-decadienoyl-CoA to 3-trans-decenoyl-CoA. The E. coli reductase catalyzed the reduction of the same two substrates but in contrast yielded 2-trans-decenoyl-CoA as reaction product. Certain other properties of the two 2,4-dienoyl-CoA reductases are also presented. The localization of the reductase step within the degradation pathway of 4-cis-decenoyl-CoA, a metabolite of linoleic acid, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号