首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a meanfield theoretical approach for studying protein-solvent interactions. Starting with the partition function of the system, we develop a field theory by introducing densities for the different components of the system. At this point, protein-solvent interactions are introduced following the inhomogeneous Flory-Huggins model for polymers. Finally, we calculate the free energy in a meanfield approximation. We apply this method to study the stability of the tetramerization domain of the tumor suppressor protein p53 when subjected to site-directed mutagenesis. The four chains of this protein are held together by hydrophobic interactions, and some mutations can weaken this bond while preserving the secondary structure of the single protein chains. We find good qualitative agreement between our numerical results and experimental data, thus encouraging the use of this method as a guide in designing experiments.  相似文献   

2.
To study how different domains of the muscle-specific intermediate filament protein, desmin, contribute to its polymerization, two of its CNBr fragments were examined as to their oligomeric structure under assembly conditions. One of these, D88, covers residues 1-88 and represents almost the entire headpiece; the other, D109, covers residues 145-254, and includes the entire Helix 1B and part of linker L12 of the intact molecule. Chemical cross-linking followed by SDS-PAGE, and analytical gel filtration, revealed that in 10 mM Tris-HCl, pH 8.5, conditions that favor tetramerization of intact desmin D88 formed only dimers. D109, on the other hand, formed primarily a dimeric species but low levels of trimeric and tetrameric species were also detectable. These data are consistent with the proposal that, during assembly of intact protein molecules into IF, the headpiece and Helix 1 contribute to dimerization of two polypeptides into a parallel, in-register coiled-coil. However, additional interactions, including headpiece-to-rod binding and hydrophobic interaction along the entire rod domain, are required to stabilize the tetramers and full-size IF.  相似文献   

3.
4.
5.
The Escherichia coli mispair-binding protein MutS forms dimers and tetramers in vitro, although the functional form in vivo is under debate. Here we demonstrate that the MutS tetramer is extended in solution using small angle x-ray scattering and the crystal structure of the C-terminal 34 amino acids of MutS containing the tetramer-forming domain fused to maltose-binding protein (MBP). Wild-type C-terminal MBP fusions formed tetramers and could bind MutS and MutS-MutL-DNA complexes. In contrast, D835R and R840E mutations predicted to disrupt tetrameric interactions only allowed dimerization of MBP. A chromosomal MutS truncation mutation eliminating the dimerization/tetramerization domain eliminated mismatch repair, whereas the tetramer-disrupting MutS D835R and R840E mutations only modestly affected MutS function. These results demonstrate that dimerization but not tetramerization of the MutS C terminus is essential for mismatch repair.  相似文献   

6.
The three-dimensional (3D) structure prediction of proteins :is an important task in bioinformatics. Finding energy functions that can better represent residue-residue and residue-solvent interactions is a crucial way to improve the prediction accu- racy. The widely used contact energy functions mostly only consider the contact frequency between different types of residues; however, we find that the contact frequency also relates to the residue hydrophobic environment. Accordingly, we present an improved contact energy function to integrate the two factors, which can reflect the influence of hydrophobic interaction on the stabilization of protein 3D structure more effectively. Furthermore, a fold recognition (threading) approach based on this energy function is developed. The testing results obtained with 20 randomly selected proteins demonstrate that, compared with common contact energy functions, the proposed energy function can improve the accuracy of the fold template prediction from 20% to 50%, and can also improve the accuracy of the sequence-template alignment from 35% to 65%.  相似文献   

7.
Duan J  Nilsson L 《Proteins》2005,59(2):170-182
The folding of an oligomeric protein poses an extra challenge to the folding problem because the protein not only has to fold correctly; it has to avoid nonproductive aggregation. We have carried out over 100 molecular dynamics simulations using an implicit solvation model at different temperatures to study the unfolding of one of the smallest known tetramers, p53 tetramerization domain (p53tet). We found that unfolding started with disruption of the native tetrameric hydrophobic core. The transition state for the tetramer to dimer transition was characterized as a diverse ensemble of different structures using Phi value analysis in quantitative agreement with experimental data. Despite the diversity, the ensemble was still native-like with common features such as partially exposed tetramer hydrophobic core and shifts in the dimer-dimer arrangements. After passing the transition state, the secondary and tertiary structures continued to unfold until the primary dimers broke free. The free dimer had little secondary structure left and the final free monomers were random-coil like. Both the transition states and the unfolding pathways from these trajectories were very diverse, in agreement with the new view of protein folding. The multiple simulations showed that the folding of p53tet is a mixture of the framework and nucleation-condensation mechanisms and the folding is coupled to the complex formation. We have also calculated the entropy and effective energy for the different states along the unfolding pathway and found that the tetramerization is stabilized by hydrophobic interactions.  相似文献   

8.
Lee SP  O'Dowd BF  Rajaram RD  Nguyen T  George SR 《Biochemistry》2003,42(37):11023-11031
In this study, we examined the mechanisms of intermolecular interaction involved in D2 dopamine receptor dimer formation to develop an understanding of the quaternary structure of G protein-coupled receptors. The potential role of two mechanisms was investigated: disulfide bridges and hydrophobic interactions between transmembrane domains. D2 dopamine receptor oligomers were unaffected by treatment with a reducing agent; however, oligomers of the D1 dopamine receptor dissociated following a similar treatment. This observation suggested that other forces such as hydrophobic interactions were more robust in the D2 receptor than in the D1 receptor in maintaining oligomerization. To elucidate which transmembrane domains were involved in the intermolecular hydrophobic interactions, truncation mutants were generated by successive deletion of transmembrane domains from amino and/or carboxyl portions of the D2 dopamine receptor. Immunoblot analyses revealed that all the fragments were well expressed but only fragments containing transmembrane domain 4 were able to self-associate, suggesting that critical areas for receptor dimerization resided within this transmembrane domain. Disruption of the helical structure of transmembrane domain 4 in a truncated receptor capable of forming dimers interfered with its ability to self-associate; however, a similar disruption of the transmembrane domain 4 helix structure in the full-length receptor did not significantly affect dimerization. These results indicated that there are other sites of interaction involved in D2 receptor oligomer assembly in addition to transmembrane domain 4.  相似文献   

9.
10-n-Alkyl-acridine-orange-chlorides (alkyl-AOs) are excellent dyes for fluorescence staining of mitochondria in living cells. The thermodynamic and spectroscopic properties of the series alkyl = methyl to nonyl have been investigated. The dyes form dimers in aqueous solution. The dimerisation is mainly a consequence of the hydrophobic interaction. The dissociation constant K respectively association constant K-1 of the dimers describes the hydrophobic interaction and therefore the hydrophobic properties of the dye cations. The dissociation constant K = K0 at the standard temperature T = 298 K has been determined spectroscopically in aqueous solution. It depends on the length of the alkyl residue n-CmH2m + 1 (m = 1 - 9) (Table 2). In addition the standard dissociation enthalpies (energies) delta H0 and dissociation entropies delta S0 have been determined from the temperature dependence of K (Table 2). With increasing chain length m the thermodynamic parameters K0, delta H0, delta S0 decrease. Therefore with growing m the dimers are stabilized. This stabilization is an entropic effect which is diminished by the energetic effect. The change of the thermodynamic parameters with m is in agreement with the concept of hydrophobic interaction and the stabilization of water structure in the surroundings of hydrophobic residues. As one would expect nonyl-AO is the most hydrophobic dye of the series. As an example the spectroscopic properties of nonyl-AO have been determined. We measured the absorption, luminescence and polarization spectra in rigid ethanol at 77 K. Under these conditions alkyl-AOs associate like dyes in Water at room temperature. The spectra depend on the concentration of the solution. In very dilute solution we observe mainly the spectra of the monomers M, in concentrated solution the spectra of the dimers D. The spectra of M and D are characteristically different. The monomers have one long wave length absorption M1 = 20.000 cm-1 with resonance fluorescence. In addition there is a long living phosphorescence at 16.600 cm-1. Its polarization is nearly perpendicular to the plane of the AO residue. The dimers have two long wave length absorption bands D1 = 18.700 and D2 = 21.200 cm-1 with very different intensities. D1 has very low intensity and is forbitten, D2 is allowed. D1 shows fluorescence. Phosphorescence has not been observed. D1, D2 and also M1 are polarized in the plane of the AO residue. At short wave length absorption and polarization spectra are very similar. From the spectra we constructed the energy level diagram of M and D (Fig. 9). The first excited state of M splits in D in two levels. The level splitting and the transition i  相似文献   

10.
A large set of protein structures resolved by X-ray or NMR techniques has been extracted from the Protein Data Bank and analyzed using statistical methods. In particular, we investigate the interactions between side chains and the interactions between solvent and side chains, pointing out on the possibility of including the solvent as part of a knowledge-based potential. The solvent-residue contacts are accounted for on the basis of the Voronoi's polyhedron analysis. Our investigation confirms the importance of hydrophobic residues in determining the protein stability. We observe that in general hydrophobic-hydrophobic interactions and, more specifically, aromatic-aromatic contacts tend to be increasingly distally separated in the primary sequence of proteins, thus connecting distinct secondary structure elements. A simple relation expressing the dependence of the protein free energy by the number of residues is proposed. Such a relation includes both the residue-residue and the solvent-residue contributions. The former is dominant for large size proteins, whereas for small sizes (number of residues less than 100) the two terms are comparable. Gapless threading experiments show that the solvent-residue knowledge-based potential yields a significant contribution with respect to discriminating the native structure of proteins. Such contribution is important especially for proteins of small size and is similar to that given by the most favorable residue-residue knowledge-based potential referring to hydrophobic-hydrophobic interactions such as isoleucine-leucine. In general, the inclusion of the solvent-residue interaction produces a relevant increase of the free energy gap between the native structures and decoys.  相似文献   

11.
It has been suggested that the large conductance Ca(2)+-activated K(+) channel contains one or more domains known as regulators of K(+) conductance (RCK) in its cytosolic C terminus. Here, we show that the second RCK domain (RCK2) is functionally important and that it forms a heterodimer with RCK1 via a hydrophobic interface. Mutant channels lacking RCK2 are nonfunctional despite their tetramerization and surface expression. The hydrophobic residues that are expected to form an interface between RCK1 and RCK2, based on the crystal structure of the bacterial MthK channel, are well conserved, and the interactions of these residues were confirmed by mutant cycle analysis. The hydrophobic interaction appears to be critical for the Ca(2+)-dependent gating of the large conductance Ca(2+)-activated K(+) channel.  相似文献   

12.
Stabilization of protein structures and protein-protein interactions are critical in the engineering of industrially useful enzymes and in the design of pharmaceutically valuable ligands. Hydrophobic interactions involving phenylalanine residues play crucial roles in protein stability and protein-protein/peptide interactions. To establish an effective method to explore the hydrophobic environments of phenylalanine residues, we present a strategy that uses pentafluorophenylalanine (F5Phe) and cyclohexylalanine (Cha). In this study, substitution of F5Phe or Cha for three Phe residues at positions 328, 338, and 341 in the tetramerization domain of the tumor suppressor protein p53 was performed. These residues are located at the interfaces of p53-p53 interactions and are important in the stabilization of the tetrameric structure. The stability of the p53 tetrameric structure did not change significantly when F5Phe-containing peptides at positions Phe328 or Phe338 were used. In contrast, the substitution of Cha for Phe341 in the hydrophobic core enhanced the stability of the tetrameric structure with a T(m) value of 100 degrees C. Phe328 and Phe338 interact with each other through pi-interactions, whereas Phe341 is buried in the surrounding alkyl side-chains of the hydrophobic core of the p53 tetramerization domain. Furthermore, high pressure-assisted denaturation analysis indicated improvement in the occupancy of the hydrophobic core. Considerable stabilization of the p53 tetramer was achieved by filling the identified cavity in the hydrophobic core of the p53 tetramer. The results indicate the status of the Phe residues, indicating that the "pair substitution" of Cha and F5Phe is highly suitable for probing the environments of Phe residues.  相似文献   

13.
14.
Recent studies have shown that the G protein-coupled, extracellular calcium ([Ca(2+)](o))-sensing receptor (CaR) forms disulfide-linked dimers through cysteine residues within its extracellular domain and that dimerization of the CaR has functional implications. In this study, we have investigated which of these disulfide linkages are essential for dimerization of the CaR and whether they are required for these functional interactions. Our results confirm the key roles of Cys(129) and Cys(131) in CaR dimerization. However, utilizing cross-linking of the CaR or immunoprecipitation of a non-FLAG-tagged CaR with a FLAG-tagged CaR using anti-FLAG antibody, we demonstrate that CaRs with or without these two cysteines form dimers on the cell surface to a similar extent. In addition, reconstitution of CaR-mediated signaling by cotransfection of two individually inactive mutant CaRs is nearly identical in the presence or absence of both Cys(129) and Cys(131), showing that covalent linkage of CaR dimers is not needed for functional interactions between CaR monomers. These findings suggest that the CaR has at least two distinct types of motifs mediating dimerization and functional interactions, i.e. covalent interactions involving intermolecular disulfide bonds and noncovalent, possibly hydrophobic, interactions.  相似文献   

15.
Intermediate-filament forming proteins are known to form rod-shaped dimers that are calculated to be 45 nm in length. Molecular modeling indicates that the dimerization is promoted by interchain hydrophobic interactions between sections of α helix β and helix. Further aggregation involves the formation of tetramers in which two dimers are anti-parallel and staggered to two characteristic degrees of overlap. Modeling indicated that the degrees of stagger are dictated by the association of sections of α helix in 4-chain bundles, in which hydrophobic side chains are sequestered from contact with water. The staggered arrangement of two dimers produces a tetramer having sections of 2-chain rod in which hydrophobic side chains are exposed to water. Extension of the tetramer to form protofilaments may be driven by associations with the 2-chain regions that reduce aqueous exposure of the hydrophobic side chains. Exposure of hydrophobic groups may be reduced by the 2-chain regions folding back upon themselves so that the entire tetramer becomes a 4-chain conformation. This prediction is in line with electron microscope data showing that mixtures of the lower oligomers contain rods of uniform thickness ranging upwards from 45 nm in a series having incremental increases in length. Data from previous chemical crosslinking studies support this model and also the idea that the completed intermediate filaments each consist of seven 4-chain protofilaments. Proteins 26:472–478 © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.  相似文献   

18.
Bovine β-casein (β-CN) is a highly amphiphilic micellising phospho-protein showing chaperone-like activity in vitro. Recently, existence of multiple sequential epitopes on β-CN polypeptide chain in both hydrophilic–polar (ψ) and hydrophobic–apolar domains (φ) has been evidenced. In order to clarify specific contribution of polar and apolar domains in micellisation process and in shaping immunoreactivity of β-CN, its dimeric/bi-amphiphilic “quasi palindromic” forms covalently connected by a disulfide bond linking either N-terminal (C4 β-CND) or C-terminal domain (C208 β-CND) were produced and studied. Depending on the C- or N-terminal position of inserted cysteine, each dimeric β-CN contains one polar/apolar region at the centre and two external hydrophobic/hydrophilic ends. Consequently, such casein dimers have radically different polarities/hydrophobicities on their outside surfaces. Dynamic light scattering (DLS) measurements indicate that these dimeric casein molecules form micelles of different sizes depending on arrangement of polar fragments of the β-CN mutants in their constrained dimers. Non-aggregated dimers have different hydrodynamic diameters that could be explained by their different geometries. Measurements of fluorescence showed more hydrophobic environment of Trp residues of C208 β-CND, while in similar experimental conditions Trp residues of C4 β-CND and native β-CN were more exposed to the polar medium. Both fluorescence and DLS studies showed greater propensity for micellisation of the dimeric β-CNs, suggesting that the factors inducing the formation of micelles are stronger in the bi-amphiphilic dimers. 1-Anilino-naphthalene-8-sulfonate (ANS) binding studies showed different binding of ANS by these dimers as well as different exposition of ANS binding (hydrophobic) regions in the micellar states. The differences in fluorescence resonance energy transfer (FRET) profiles of C4 β-CND and C208 β-CND can be explained by differences of distances and/or by differences of relative orientations of the donor (Trp) and acceptor (ANS), as well as by differences in quenching properties of the disulfide bridges and intra-molecular hydrophobic interactions. The immunoreactivity assays showed somewhat lower IgE response to C208 β-CND than to C4 β-CND. Thus, dimerization of C208 β-CN, connecting two C-terminal hydrophobic domains of two monomers doubling long-range hydrophobic interactions, possibly may hide a part of epitopes in the hydrophobic interface/core of C208 β-CND that is consistent with the results of DLS and fluorescence studies. The obtained results indicate structural differences of dimers – possibly the formation of Y- and U-shaped structures for C208 β-CND and C4 β-CND, respectively. This study not only demonstrated the importance of the organization of polar and hydrophobic regions during micellisation of the constrained and oriented β-CN dimers but also confirmed a possible role of C-terminal hydrophobic domain in the immunoreactivity profile of native β-CN.  相似文献   

19.
The state of oligomerization of the tumor suppressor p53 is an important factor in its various biological functions. It has a well-defined tetramerization domain, and the protein exists as monomers, dimers and tetramers in equilibrium. The dissociation constants between oligomeric forms are so low that they are at the limits of measurement by conventional methods in vitro. Here, we have used the high sensitivity of single-molecule methods to measure the equilibria and kinetics of oligomerization of full-length p53 and its isolated tetramerization domain, p53tet, at physiological temperature, pH and ionic strength using fluorescence correlation spectroscopy (FCS) in vitro. The dissociation constant at 37 °C for tetramers dissociating into dimers for full-length p53 was 50 ± 7 nM, and the corresponding value for dimers into monomers was 0.55 ± 0.08 nM. The half-lives for the two processes were 20 and 50 min, respectively. The equivalent quantities for p53tet were 150 ± 10 nM, 1.0 ± 0.14 nM, 2.5 ± 0.4 min and 13 ± 2 min. The data suggest that unligated p53 in unstressed cells should be predominantly dimeric. Single-molecule FCS is a useful procedure for measuring dissociation equilibria, kinetics and aggregation at extreme sensitivity.  相似文献   

20.
通过分子表面的计算考察了三类金属硫蛋白(大鼠金属硫蛋白亚型Ⅱ,兔肝金属硫蛋白亚型Ⅰ和Ⅱ)二聚体短聚体中组成单元之间的疏水性相互作用。计算结果表明二聚体和三聚体中各组成单元之间均可以形成较好的几何匹配。对于二聚体而言,单体和单体之间存在一定的疏水性相互作用,但作用力 三聚体中,单体和二聚体之间的疏水残基能通过好的空间匹配形成很强的疏水性相互作用。对于这三种金属硫蛋白,二聚体中单体和单体之间的疏水性相  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号