首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Activity of short segments of Type I antifreeze protein   总被引:1,自引:0,他引:1  
Kun H  Mastai Y 《Biopolymers》2007,88(6):807-814
In this work, we present a study on the antifreeze activity of short segments of a Type I antifreeze protein, instead of the whole protein. This approach simplifies the correlation between antifreeze protein characteristics, such as hydrophilicity/hydrophobicity, and the effect of these characteristics on the antifreeze mechanism. Three short polypeptides of Type I AFP have been synthesized. Their antifreeze activity and interactions with water and ice crystals have been analyzed by various techniques such as circular dichroism spectroscopy, X-ray diffraction, differential scanning calorimetry, and osmometry. It is shown that one short segment of Type I AFP has an antifreeze activity of about 60% of the native protein activity. In this work, we demonstrate that short segments of Type I AFPs possess nonzero thermal hysteresis and result in modifications in the growth habits and growth rates of ice. This approach enables the preparation of large quantities of short AFP segments at low cost with high antifreeze activity, and opens the possibility of developing the commercial potential of AFPs.  相似文献   

2.
Polar fish, cold hardy plants, and overwintering insects produce antifreeze proteins (AFPs), which lower the freezing point of solutions noncolligatively and inhibit ice crystal growth. Fish AFPs have been shown to stabilize membranes and cells in vitro during hypothermic storage, probably by interacting with the plasma membrane, but the mechanism of this stabilization has not been clear. We show here that during chilling to nonfreezing temperatures the alpha-helical AFP type I from polar fish inhibits leakage across model membranes containing an unsaturated chloroplast galactolipid. The mechanism involves binding of the AFP to the bilayer, which increases the phase transition temperature of the membranes and alters the molecular packing of the acyl chains. We suggest that this change in acyl chain packing results in the reduced membrane permeability. The data suggest a hydrophobic interaction between the peptide and the bilayer. Further, we suggest that the expression of AFP type I in transgenic plants may be significant for thermal adaptation of chilling-sensitive plants.  相似文献   

3.
Antifreeze proteins differentially affect model membranes during freezing   总被引:6,自引:0,他引:6  
Over the past decade antifreeze proteins from polar fish have been shown either to stabilize or disrupt membrane structure during low temperature and freezing stress. However, there has been no systematic study on how membrane composition affects the interaction of antifreeze proteins with membranes under stress conditions. Therefore, it is not possible at present to predict which antifreeze proteins will protect, and which will damage a particular membrane during chilling or freezing. Here, we analyze the effects of freezing on spinach thylakoid membranes and on model membranes of varying lipid composition in the presence of antifreeze protein type I (AFP I) and specific fractions of antifreeze glycoproteins (AFGP). We find that the addition of galactolipids to phospholipid model membranes changes the effect each protein has on the membrane during freezing. However, the greatest differences observed in this study are between the different types of antifreeze proteins. We find that AFP type I and the largest molecular weight fractions of AFGP induce concentration dependent leakage from, and are fusogenic to the liposomes. This is the first report that an antifreeze protein induces membrane fusion. In contrast, the smallest fraction of AFGP offers a limited degree of protection during freezing and does not induce membrane fusion at concentrations up to 10 mg/ml.  相似文献   

4.
We have previously shown that antifreeze protein (AFP) type I from winter flounder interacts with the acyl chains of lipids in model membranes containing a mixture of dimyristoylphosphatidylcholine (DMPC) and the plant thylakoid lipid digalactosyldiacylglycerol (DGDG), most likely through hydrophobic interactions. By contrast, in studies with pure phospholipid membranes, no such interaction was seen. DGDG is a highly unsaturated lipid, which renders these studies quite different from the previous studies of AFP-membrane interaction where the lipids were saturated or trans-unsaturated. Therefore, it seemed possible that either the digalactose headgroups or the unsaturated DGDG acyl chains, or both, may be important for interactions of membranes with AFP type I. To distinguish between these possibilities, we catalytically hydrogenated the DGDG to obtain a galactolipid with completely saturated fatty acyl chains. The results with the hydrogenated DGDG were strikingly different from those obtained previously with the unsaturated DGDG; the clear binding of AFPs to the bilayer appeared to be lost. Nevertheless, the temperature-dependent folding of AFP type I was inhibited in the presence of liposomes containing either the unsaturated or the hydrogenated DGDG. The results indicate that the liposomes and protein still interact, even following hydrogenation of the acyl chains, perhaps at the membrane-solution interface.  相似文献   

5.
差示扫描量热法直接测定沙冬青抗冻蛋白的热滞效应   总被引:4,自引:0,他引:4  
用差示扫描量热法直接测定了从沙冬青中提取的一种抗冻蛋白(AFP)组分的低温热行为。结果表明,该组分的低温热行为远较文献报道的各种抗冻蛋白复杂。在降、升温过程中,在低和高温侧都给出两个放或吸热峰,两个峰表现出相互独立而又相互依存的热滞行为。低温峰的热滞活性远高于高温岭。我们认为,这种AFP分子对水及冰晶很可能有两种不同的相互作用和影响。  相似文献   

6.
昆虫对低温的适应——抗冻蛋白研究进展   总被引:9,自引:3,他引:9  
景晓红  郝树广  康乐 《昆虫学报》2002,45(5):679-683
昆虫抗冻蛋白的研究主要在几种昆虫中展开,到目前为止已有二十多种昆虫抗冻蛋白被分离纯化。本文综述了关于昆虫抗冻蛋白的结构、组成、生物学活性及功能等方面的研究进展。昆虫抗冻蛋白的二级结构为β折叠和β转角,在其特殊的氨基酸序列结构中,半胱氨酸形成的二硫键对稳定其结构和活性起着很重要的作用。影响昆虫抗冻蛋白的因子,如活化蛋白及低分子量溶质的发现开辟了昆虫抗冻蛋白研究的新领域。  相似文献   

7.
The effect of four synthetic analogues of the 37-residue winter flounder type I antifreeze protein (AFP), which contain four Val, Ala or Ile residues in place of Thr residues at positions 2, 13, 24 and 37 and two additional salt bridges, on the binary lipid system prepared from a 1:1 mixture of the highly unsaturated DGDG and saturated DMPC has been determined using FTIR spectroscopy. In contrast to the natural protein, which increases the thermotropic phase transition, the Thr, Val and Ala analogues decreased the thermotropic phase transitions of the liposomes by 2.2 degrees Celsius, 3.4 degrees Celsius and 2.4 degrees Celsius, while the Ile analogue had no effect on the transition. Experiments performed using perdeuterated DMPC showed that the Ala and Thr peptides interacted preferentially with the DGDG in the lipid mixture, while the Val peptide showed no preference for either lipid. The results are consistent with interactions involving the hydrophobic face of type I AFPs and model bilayers, i.e. the same face of the protein that is responsible for antifreeze properties. The different effects correlate with the helicity of the peptides and suggest that the solution conformation of the peptides has a significant role in determining the effects of the peptides on thermotropic membrane phase transitions.  相似文献   

8.
邱立明  马纪 《昆虫知识》2009,46(6):837-845
产生抗冻蛋白(antifreeze protein,AFP)是许多昆虫抵御寒冷的一种重要机制。昆虫抗冻蛋白基因的克隆和表达是研究抗冻蛋白活性和功能的主要途径。文章归纳GenBank所登录的昆虫抗冻蛋白基因及其特点,总结昆虫抗冻蛋白基因的天然表达和基因工程表达方面尚未明确或需要克服的一些问题。目前在GenBank注册的昆虫抗冻蛋白基因约100个,集中于9种昆虫隶属鞘翅目3个科和鳞翅目1个科。昆虫抗冻蛋白基因具有多拷贝和多同种型(isoforms)的特点。昆虫抗冻蛋白的天然表达具有物种间和同种型间的多样性。基因工程表达昆虫抗冻蛋白需要克服表达量低活性不高的问题。对昆虫抗冻蛋白表达规律的研究有助于全面认识其功能。  相似文献   

9.
We have usedDrosophila melanogaster as a model system for the transgenic expression of cystine-rich Type II antifreeze protein (AFP) from sea raven. This protein was synthesized and secreted into fly haemolymph where it migrated as a larger species (16 kDa) than the mature form of the protein (14 kDa) as judged by immunoblotting.Drosophila-produced Type II AFP demonstrated antifreeze activity both in terms of thermal hysteresis (0.13 °C) and inhibition of ice recrystallization. Recombinant AFP was purified and N-terminal sequencing revealed a 17 aa extension that began at the predicted signal peptide cleavage point. The expression of all three AFP types in transgenicDrosophila has now been achieved. We conclude that the globular Type II and Type III AFPs are better choices for antifreeze transfer to other organisms than is the more widely used linear Type I AFP.  相似文献   

10.
The antifreeze polypeptides (AFPs) are found in several marine fish and have been grouped into four distinct biochemical classes (type I-IV). Recently, the new subclass of skin-type, type I AFPs that are produced intracellularly as mature polypeptides have been identified in the winter flounder (Pleuronectes americanus) and the shorthorn sculpin (Myoxocephalus scorpius). This study demonstrates the presence of skin-type AFPs in the longhorn sculpin (Myoxocephalus octodecemspinosus), which produces type IV serum AFPs. Using polymerase chain reaction-based methods, a clone that encoded for a type I AFP was identified. The clone lacked a signal sequence, indicating that the mature polypeptide is produced in the cytosol. A recombinant protein was produced in Escherichia coli and antifreeze activity was characterized. Four individual Ala-rich polypeptides with antifreeze activity were isolated from the skin tissue. One polypeptide was completely sequenced by tandem MS. This study provides the first evidence of a fish species that produces two different biochemical classes of antifreeze proteins (type I and type IV), and enforces the notion that skin-type AFPs are a widespread biological phenomenon in fish.  相似文献   

11.
Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants.  相似文献   

12.
We have determined the solution structure of rSS3, a recombinant form of the type I shorthorn sculpin antifreeze protein (AFP), at 278 and 268 K. This AFP contains an unusual sequence of N-terminal residues, together with two of the 11-residue repeats that are characteristic of the type I winter flounder AFP. The solution conformation of the N-terminal region of the sculpin AFP has been assumed to be the critical factor that results in recognition of different ice planes by the sculpin and flounder AFPs. At 278 K, the two repeats units (residues 11-20 and 21-32) in rSS3 form a continuous alpha-helix, with the residues 30-33 in the second repeat somewhat less well defined. Within the N-terminal region, residues 2-6 are well defined and helical and linked to the main helix by a more flexible region comprising residues A7-T11. At 268 K the AFP is overall more helical but retains the apparent hinge region. The helical conformation of the two repeats units is almost identical to the corresponding repeats in the type I winter flounder AFP. We also show that while tetracetylated rSS3 has antifreeze activity comparable to the natural AFP, its overall structure is the same as that of the unacetylated peptide. These data provide some insight into the structural determinants of antifreeze activity and should assist in the development of models that explain the recognition of different ice interfaces by the sculpin and flounder type I AFPs.  相似文献   

13.
Summary Purified antifreeze proteins (AFPs) from the larvae of the beetle Dendroides canadensis do not produce the high levels of antifreeze activity seen in the hemolymph of overwintering larvae, even when the purified AFPs are assayed at very high concentrations. However, addition of certain proteins or agar (at concentrations sufficiently low that the gel state does not result) to the Dendroides AFP resulted in a 2–3-fold increase in activity. A 70-kDa protein with AFP-activating capabilities was purified from Dendroides larvae. Addition of this endogenous activator protein to a 4 mg·ml-1 solution of AFP increased the activity of the AFPs to values comparable to those of the hemolymph of overwintering larvae. Data derived from a modified immunoblot technique demonstrate that the activators bind to the AFP, or vice versa. Formation of this association must allow the AFP to block ice crystal growth by binding to the surface of potential seed crystals in the normal fashion. However, because the AFP-activator complex is much larger than the AFP alone, the complex probably blocks a greater surface area of the crystal and is thus a more efficient antifreeze.Abbreviations AFP antifreeze protein - BSA bovine serum albumine - DEAE diethylaminoethyl - Ig immunoglubolin - LPIN lipoprotein ice nucleator - PIN protein ice nucleator - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - TH thermal hysteresis  相似文献   

14.
Evans RP  Fletcher GL 《The FEBS journal》2005,272(20):5327-5336
Type I antifreeze proteins (AFPs) are usually small, Ala-rich alpha-helical polypeptides found in right-eyed flounders and certain species of sculpin. These proteins are divided into two distinct subclasses, liver type and skin type, which are encoded by separate gene families. Blood plasma from Atlantic (Liparis atlanticus) and dusky (Liparis gibbus) snailfish contain type I AFPs that are significantly larger than all previously described type I AFPs. In this study, full-length cDNA clones that encode snailfish type I AFPs expressed in skin tissues were generated using a combination of library screening and PCR-based methods. The skin clones, which lack both signal and pro-sequences, produce proteins that are identical to circulating plasma AFPs. Although all fish examined consistently express antifreeze mRNA in skin tissue, there is extreme individual variation in liver expression - an unusual phenomenon that has never been reported previously. Furthermore, genomic Southern blot analysis revealed that snailfish AFPs are products of multigene families that consist of up to 10 gene copies per genome. The 113-residue snailfish AFPs do not contain any obvious amino acid repeats or continuous hydrophobic face which typify the structure of most other type I AFPs. These structural differences might have implications for their ice-crystal binding properties. These results are the first to demonstrate a dual liver/skin role of identical type I AFP expression which may represent an evolutionary intermediate prior to divergence into distinct gene families.  相似文献   

15.
Strom CS  Liu XY  Jia Z 《Biophysical journal》2005,89(4):2618-2627
The antifreeze protein (AFP) reduces the growth rates of the ice crystal facets. In that process the ice morphology undergoes a modification. An AFP-induced surface pinning mechanism, through matching of periodic bond chains in two dimensions, enables two-dimensional regular ice-binding surfaces (IBSs) of the insect AFPs to engage a certain class of ice surfaces, called primary surfaces. They are kinetically stable surfaces with unambiguous and predetermined orientations. In this work, the orientations and molecular compositions of the primary ice surfaces that undergo growth rate reduction by the insect AFPs are obtained from first principles. Besides the basal face and primary prism, the ice surfaces engaged by insect AFPs include the specific ice pyramids produced by the insect AFP Tenebrio molitor (TmAFP). TmAFP-induced pyramids differ fundamentally from the ice pyramids produced by fish AFPs and antifreeze protein glycoproteins (AFPGs) as regards the ice surface configurations and the mode of interaction with the protein IBS. The molecular compositions of the TmAFP-induced pyramids are strongly bonded in two dimensions and have the constant face indices (101). In contrast, the molecular composition of the ice pyramids produced by fish AFPs and AFPGs are strongly bonded in only one direction and have variable face indices (h 0 l), none of which equal (101). The thus far puzzling behavior of the TmAFP in producing pyramidal crystallites is fully explained in agreement with experiment.  相似文献   

16.
Liu K  Jia Z  Chen G  Tung C  Liu R 《Biophysical journal》2005,88(2):953-958
Because of their remarkable ability to depress the freezing point of aqueous solutions, antifreeze proteins (AFPs) play a critical role in helping many organisms survive subzero temperatures. The beta-helical insect AFP structures solved to date, consisting of multiple repeating circular loops or coils, are perhaps the most regular protein structures discovered thus far. Taking an exceptional advantage of the unusually high structural regularity of insect AFPs, we have employed both semiempirical and quantum mechanics computational approaches to systematically investigate the relationship between the number of AFP coils and the AFP-ice interaction energy, an indicator of antifreeze activity. We generated a series of AFP models with varying numbers of 12-residue coils (sequence TCTxSxxCxxAx) and calculated their interaction energies with ice. Using several independent computational methods, we found that the AFP-ice interaction energy increased as the number of coils increased, until an upper bound was reached. The increase of interaction energy was significant for each of the first five coils, and there was a clear synergism that gradually diminished and even decreased with further increase of the number of coils. Our results are in excellent agreement with the recently reported experimental observations.  相似文献   

17.
Antifreeze proteins (AFPs) are found in many marine fish and have been classified into five biochemical classes: AFP types I-IV and the antifreeze glycoproteins. Type I AFPs are alpha-helical, partially amphipathic, Ala-rich polypeptides. The winter flounder (Pleuronectes americanus) produces two type I AFP subclasses, the liver-type AFPs (wflAFPs) and the skin-type AFPs (wfsAFPs), that are encoded by distinct gene families with different tissue-specific expression. wfsAFPs and wflAFPs share a high level of identity even though the wfsAFPs have approximately half the activity of the wflAFPs. Synthetic polypeptides based on two representative wflAFPs and wfsAFPs were generated to examine the role of the termini in antifreeze activity. Through systematic exchange of N and C termini between wflAFP-6 and wfsAFP-2, the termini were determined to be the major causative agents for the variation in activity levels between the two AFPs. Furthermore, the termini of wflAFP-6 possessed greater helix-stabilizing ability compared with their wfsAFP-2 counterparts. The observed 50% difference in activity between wflAFP-6 and wfsAFP-2 can be divided into approximately 20% for differences at each termini and approximately 10% for differences in the core. Furthermore, the N terminus was determined to be the most critical component for antifreeze activity.  相似文献   

18.
许嘉 《生物信息学》2013,11(4):297-299
抗冻蛋白是一类具有提高生物抗冻能力的蛋白质。抗冻蛋白能够特异性的与冰晶相结合,进而阻止体液内冰核的形成与生长。因此,对抗冻蛋白的生物信息学研究对生物工程发展。提高作物抗冻性有重要的推动作用。本文采用由400条抗冻蛋白序列和400条非抗冻蛋白序列构成数据集,以伪氨基酸组分为特征,利用支持向量机分类算法预测抗冻蛋白,对训练集预测精度达到91.3%,对测试集预测精度达到78.8%。该结果证明伪氨基酸组分能够很好的反映抗冻蛋白特性,并能够用于预测抗冻蛋白。  相似文献   

19.
Mutation of residues at the ice-binding site of type III antifreeze protein (AFP) not only reduced antifreeze activity as indicated by the failure to halt ice crystal growth, but also altered ice crystal morphology to produce elongated hexagonal bipyramids. In general, the c axis to a axis ratio of the ice crystal increased from approximately 2 to over 10 with the severity of the mutation. It also increased during ice crystal growth upon serial dilution of the wild-type AFP. This is in marked contrast to the behavior of the alpha-helical type I AFPs, where neither dilution nor mutation of ice-binding residues increases the c:a axial ratio of the ice crystal above the standard 3.3. We suggest that the ice crystal morphology produced by type III AFP and its mutants can be accounted for by the protein binding to the prism faces of ice and operating by step growth inhibition. In this model a decrease in the affinity of the AFP for ice leads to filling in of individual steps at the prism surfaces, causing the ice crystals to grow with a longer c:a axial ratio.  相似文献   

20.
The winter flounder (Pseudopleuronectes americanus) produces short, monomeric alpha-helical antifreeze proteins (type I AFP), which adsorb to and inhibit the growth of ice crystals. These proteins alone are not sufficiently active to protect this fish against freezing at -1.9 degrees C, the freezing point of seawater. We have recently isolated a hyperactive antifreeze protein from the plasma of the flounder with activity 10-100-fold higher than type I AFP. It is comparable in activity to the AFPs produced by insects, and is capable of conferring freeze resistance to the flounder. This novel AFP has a molecular mass of 16,683 Da and a remarkable amino acid composition that is >60% alanine. CD spectra indicate that the protein is almost entirely alpha-helical at 4 degrees C but partially denatures at 20 degrees C, resulting in a species with a moderately reduced helix content that is stable at up to 50 degrees C. This transformation correlates with irreversible loss of activity. Analytical ultracentrifugation (sedimentation velocity and equilibrium) indicates that the predominant species in solution is dimeric (molecular weight, 32,275). Size-exclusion chromatography reveals a 2-fold higher apparent molecular weight suggesting that this molecule has an unusually large Stokes radius. The axial ratio of the dimer calculated from the sedimentation velocity data is 18:1, confirming that this protein has an extraordinarily long, rod-like structure, consistent with a novel dimeric alpha-helical arrangement. The structural model that best fits these data is one in which the approximately 195 amino acids of each monomer form one approximately 290-A long alpha-helix and associate via a unique dimerization motif that is distinct from that of the leucine zipper and any other coiled-coil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号