首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of high shear on proteins   总被引:5,自引:0,他引:5  
Shear is present in almost all bioprocesses and high shear is associated with processes involving agitation and emulsification. The purpose of this study is to investigate the effect of high shear and high shear rate on proteins. Two concentric cylinder-based shear systems were used. One was a closed concentric-cylinder shear device (CCSD) and the other was a homogenizer with a rotor/stator assembly. Mathematical modeling of these systems allowed calculation of the shear rate and shear. The CCSD generated low shear rates (a few hundred s(-1)), whereas the homogenizer could generate very high shear rates (> 10(5) s(-1)). High shear could be achieved in both systems by increasing the processing time. Recombinant human growth hormone (rhGH) and recombinant human deoxyribonuclease (rhDNase) were used as the model proteins in this study. It was found that neither high shear nor high shear rate had a significant effect on protein aggregation. However, a lower melting temperature and enthalpy were detected for highly sheared rhGH by using scanning microcalorimetry, presumably due to some changes in protein's conformation. Also, SDS-PAGE indicated the presence of low molecular-weight fragments, suggesting that peptide bond breakage occurred due to high shear. rhDNase was relatively more stable than rhGH under high shear. No conformational changes and protein fragments were observed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
When cellulase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] was exposed to air-liquid interface and subjected to shear, a significant deactivation was observed. The cellulase deactivation due to the interfacial effect combined with the shear effect was found to be far more severe and extensive than that due to the shear effect alone. Both increased cellulase concentration, and addition of surfactant (Zonyl or Triton) reduced the degree of deactivation. By using sufficient surfactant the cellulase deactivation can be prevented, and the cellulase can be stabilized and its use prolonged. The ratio of surface excess to the bulk protein is significantly reduced when the enzyme concentration is increased. The stabilizing effect of surfactant was attributed to the reduction in surface excess of cellulase.  相似文献   

3.
A rotating disk shear device was used to study the effect of interfacial shear on the structural integrity of human monoclonal antibodies of IgG4 isotype. Factors associated with the solution conditions (pH, ionic strength, surfactant concentration, temperature) and the interface (surface roughness) were studied for their effect on the rate of IgG4 monomer loss under high shear conditions. The structural integrity of the IgG4 was probed after exposure to interfacial shear effects by SDS‐PAGE, IEF, dynamic light scattering, and peptide mapping by LC‐MS. This analysis revealed that the main denaturation pathway of IgG4 exposed to these effects was the formation of large insoluble aggregates. Soluble aggregation, breakdown in primary structure, and chemical modifications were not detected. The dominant factors found to affect the rate of IgG4 monomer loss under interfacial shear conditions were found to be pH and the nanometer‐scale surface roughness associated with the solid‐liquid interface. Interestingly, temperature was not found to be a significant factor in the range tested (15–45°C). The addition of surfactant was found to have a significant stabilizing effect at concentrations up to 0.02% (w/v). Implications of these findings for the bioprocessing of this class of therapeutic protein are briefly discussed. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
The assessment of new therapeutic strategies to cure surfactant-associated lung disorders would greatly benefit from assay systems allowing routine evaluations of surfactant functions. We present a method to measure surfactant adsorption kinetics into interfacial air-liquid interfaces based on fluorescence microplate readers. The principle of measurement is simple, robust, and reproducible: Wells of a microtiter plate contain an aqueous solution of a light-absorbing agent. Fluorescence is excited and collected from the top of the wells so that fluorescently labeled surfactant injected into the bulk can be detected only once adsorbed into the air-liquid interface. Mass transfer from the bulk to the interface is achieved by orbital shaking implemented in the plate reader instrument. The method has been tested and validated by using phospholipids or surfactants of different origins, by using albumin as surfactant inhibitor, and by comparison of results with Wilhelmy balance measurements. The method is suited for implementation in high-throughput screening routines for conditions affecting, or improving, surfactant film formation. In contrast to surface tension measurements, our method gives a direct readout of the amount of surfactant adsorbing into the interface, including the functionally important amount of material firmly associating with the interfacial film.  相似文献   

5.
The purpose of this study was to assess the stability of protein formulations using a device designed to generate defined, quantifiable levels of shear in the presence of a solid-liquid interface. The device, based on a rotating disk, produced shear strain rates of up to 3.4 x 10(4) s(-1) (at 250 rps) and was designed to exclude air-liquid interfaces and enable temperature to be controlled. Computational fluid dynamics (CFD) was used to study the fluid flow patterns within the device and to determine the shear strain rate (s(-1)) at a range of disk speeds. The device was then used to study the effect on a monoclonal IgG4 of high levels of shear at the solid-liquid interface. Monomeric antibody concentration and aggregation of the protein in solution were monitored by gel permeation HPLC and turbidity at 350 nm. High shear strain rates were found to cause significant levels of protein aggregation and precipitation with reduction of protein monomer following first-order kinetics. Monomer reduction rate was determined for a range of disk speeds and found to have a nonlinear relationship with shear strain rate, indicating the importance of identifying and minimizing such environments during processing.  相似文献   

6.
We investigated a model of acute respiratory distress syndrome in which the serum protein albumin adsorbs to an air-liquid interface and prevents the thermodynamically preferable adsorption of the clinical lung surfactant Survanta by inducing steric and electrostatic energy barriers analogous to those that prevent colloidal aggregation. Chitosan and polyethylene glycol (PEG), two polymers that traditionally have been used to aggregate colloids, both allow Survanta to quantitatively displace albumin from the interface, but through two distinct mechanisms. Direct visualization with confocal microscopy shows that the polycation chitosan coadsorbs to interfacial layers of both Survanta and albumin, and also colocalizes with the anionic domains of Survanta at the air-liquid interface, consistent with it eliminating the electrostatic repulsion by neutralizing the surface charges on albumin and Survanta. In contrast, the PEG distribution does not change during the displacement of albumin by Survanta, consistent with PEG inducing a depletion attraction sufficient to overcome the repulsive energy barrier toward adsorption.  相似文献   

7.
Pulmonary surfactant is a lipid-protein complex that lowers surface tension at the respiratory air-liquid interface, stabilizing the lungs against physical forces tending to collapse alveoli. Dysfunction of surfactant is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome where naturally occurring surfactant-inhibitory agents such as serum, meconium, or cholesterol reach the lung. We analyzed the effect of hyaluronan (HA) on the structure and surface behavior of pulmonary surfactant to understand the mechanism for HA-promoted surfactant protection in the presence of inhibitory agents. In particular, we found that HA affects structural properties such as the aggregation state of surfactant membranes and the size, distribution, and order/packing of phase-segregated lipid domains. These effects do not require a direct interaction between surfactant complexes and HA and are accompanied by a compositional reorganization of large surfactant complexes that become enriched with saturated phospholipid species. HA-exposed surfactant reaches very high efficiency in terms of rapid and spontaneous adsorption of surfactant phospholipids at the air-liquid interface and shows significantly improved resistance to inactivation by serum or cholesterol. We propose that physical effects pertaining to the formation of a meshwork of interpenetrating HA polymer chains are responsible for the changes in surfactant structure and composition that enhance surfactant function and, thus, resistance to inactivation. The higher resistance of HA-exposed surfactant to inactivation persists even after removal of the polymer, suggesting that transient exposure of surfactant to polymers like HA could be a promising strategy for the production of more efficient therapeutic surfactant preparations.  相似文献   

8.
A theory based on the Smolukowski analysis of colloid stability shows that the presence of charged, surface-active serum proteins at the alveolar air-liquid interface can severely reduce or eliminate the adsorption of lung surfactant from the subphase to the interface, consistent with the observations reported in the companion article (pages 1769-1779). Adding nonadsorbing, hydrophilic polymers to the subphase provides a depletion attraction between the surfactant aggregates and the interface, which can overcome the steric and electrostatic resistance to adsorption induced by serum. The depletion force increases with polymer concentration as well as with polymer molecular weight. Increasing the surfactant concentration has a much smaller effect than adding polymer, as is observed. Natural hydrophilic polymers, like the SP-A present in native surfactant, or hyaluronan, normally present in the alveolar fluids, can enhance adsorption in the presence of serum to eliminate inactivation.  相似文献   

9.
Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. added to LS, or polyelectrolytes such as chitosan, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical techniques including isotherms, fluorescence microscopy, electron microscopy and X-ray diffraction show that LS adsorption is enhanced by this mechanism without substantially altering the structure or properties of the LS monolayer.  相似文献   

10.
To investigate the mechanisms by which vesicles of pulmonary surfactant adsorb to an air-liquid interface, we measured the effect of different phospholipids and of their concentration both in the subphase and at the interface on this process. Adsorbing vesicles contained the hydrophobic surfactant proteins mixed with the following four sets of surfactant phospholipids that varied the content of anionic headgroups and mixed acyl chains independently: the complete set of purified phospholipids (PPL) from calf surfactant; modified PPL (mPPL) from which the anionic phospholipids were removed; a mixture of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG) (9:1, mol:mol); and DPPC alone. The initial reduction in surface tension depended strongly on the anionic phospholipids and the subphase concentration. The acyl groups had no effect. Adsorption beyond the initial stage depended more on the mixed acyl groups, became increasingly independent of subphase concentration, and was determined instead by the interfacial concentration of the surface film. The different constituents produced the same effects in vesicles adsorbing to a clean interface or in a preexisting film to which vesicles of SP:DPPC adsorbed. Adsorption for vesicles of SP:PPL adsorbing to DPPC or of SP:DPPC to PPL above a certain threshold surface concentration followed exactly the same isotherm. Our results fit best with a two-step model for adsorption. The anionic phospholipids first promote the initial juxtaposition of vesicles to the interface. Compounds with mixed acyl constituents at the point of contact between vesicle and interface then facilitate fusion with the surface.  相似文献   

11.
These in vitro experiments study a potential mechanism by which plasma proteins, found in the alveoli during pulmonary edema and hemorrhage, may act to inhibit the surface activity of pulmonary surfactant. The results indicate that the inhibition of the adsorption facility and surface tension lowering ability of a calf lung surfactant extract (CLSE) by albumin, hemoglobin, or fibrinogen may be completely abolished by centrifugation of the protein-surfactant mixture at 12,500 x g. Furthermore, albumin, hemoglobin and fibrinogen (1.25 mg/ml) were shown to inhibit the adsorption of high concentrations of CLSE (0.32 mg/ml), normally unaffected by the addition of exogenous proteins, when the CLSE was injected into the subphase under a preformed protein surface film. Similarly, injection of large amounts of these proteins (2.5 mg/ml) into the subphase beneath a preformed CLSE surface film was without effect, even though the CLSE concentration was only 0.06 mg/ml, a surfactant concentration which is normally inhibited by even small amounts of exogenous protein. Taken together, the data suggest that some proteins may inhibit surfactant function by preventing the surfactant phospholipids from adsorbing to the air-liquid interface, possibly by a competition between the proteins and CLSE phospholipids for space at the air-liquid interface rather than direct molecular interactions between proteins and surfactant.  相似文献   

12.
Dissipative particle dynamics is used to simulate the oil/water/surfactant system in the absence and presence of polymer. Structural properties, interfacial properties, and their dependence on the surfactant concentration, polymer concentration and oil/water ratio were investigated. The snapshots illustrate the variation of the structure of oil/water/surfactant system. In the presence of polymer, the interface is supersaturated at a lower surfactant concentration. The end-to-end distance increases with surfactant concentration and polymer chains but shows weak dependence on the oil/water ratio. The peak of density grows higher with surfactant concentration, but it is not affected by oil/water ratio. The density profiles of polymer grow higher with polymer chains, indicating that most of the polymer chains stay at the interface for stability. Interfacial thickness shows an adsorption of polymer/surfactant complexes at the interface, where the polymer is in an extended conformation at the interface. The formation of polymer/surfactant complexes is favourable for the decrease of oil/water interfacial tension.  相似文献   

13.
Citrated platelet-rich human plasma was subjected to one of three experimental treatments at 37 degrees C for 15 min: stirring, bubbling (with stirring), and gentle agitation achieved by a rocking motion. The last two were "equiconvective" as judged by equilibration rates with CO2 and O2 but presumably differed in the shear stress they imposed on the cells. Stirring platelets in normal air or 5% CO2-air caused no significant aggregation. Bubbling air through platelet-rich plasma increased its pH and marked aggregation occurred. Bubbling CO2-air caused the platelet-rich plasma pH to attain its physiological level of 7.4 with less aggregation. In both cases, subsequent ADP-induced aggregation was diminished. Rocking (without stirring) in the presence of CO2-air caused negligible aggregation in platelets and an enhanced response to ADP. Because of the marked difference between the two equiconvective treatments, bubbling and rocking, the main factor in activating the human platelets is suggested to be shear stress (potentiated by high pH), with perhaps a lesser contribution from the air-plasma interface.  相似文献   

14.
The presence of cholesterol is critical in defining a dynamic lateral structure in pulmonary surfactant membranes. However, an excess of cholesterol has been associated with impaired surface activity of surfactant. It has also been reported that surfactant protein SP-C interacts with cholesterol in lipid/protein interfacial films. In this study, we analyzed the effect of SP-C on the thermodynamic properties of phospholipid membranes containing cholesterol, and the ability of lipid/protein complexes containing cholesterol to form and respread interfacial films capable of producing very low surface tensions upon repetitive compression-expansion cycling. SP-C modulates the effect of cholesterol to reduce the enthalpy associated with the gel-to-liquid-crystalline melting transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, as analyzed by differential scanning calorimetry. The presence of SP-C affects more subtly the effects of cholesterol on the thermotropic properties of ternary membranes, mimicking more closely the lipid composition of native surfactant, where SP-C facilitates the miscibility of the sterol. Incorporation of 1% or 2% SP-C (protein/phospholipid by weight) promotes almost instantaneous adsorption of suspensions of DPPC/palmitoyloleoylphospatidylcholine (POPC)/palmitoyloleoyl-phosphatidylglycerol (POPG) (50:25:15, w/w/w) into the air-liquid interface of a captive bubble, in both the absence and presence of cholesterol. However, cholesterol impairs the ability of SP-C-containing films to achieve very low surface tensions in bubbles subjected to compression-expansion cycling. Cholesterol also substantially impairs the ability of DPPC/POPC/POPG films containing 1% surfactant protein SP-B to mimic the interfacial behavior of native surfactant films, which are characterized by very low minimum surface tensions with only limited area change during compression and practically no compression-expansion hysteresis. However, the simultaneous presence of 2% SP-C practically restores the compression-expansion dynamics of cholesterol- and SP-B-containing films to the efficient behavior shown in the absence of cholesterol. This suggests that cooperation between the two proteins is required for lipid-protein films containing cholesterol to achieve optimal performance under physiologically relevant compression-expansion dynamics.  相似文献   

15.
Pulmonary surfactant is secreted by alveolar type II cells as lipid-rich, densely packed lamellar body-like particles (LBPs). The particulate nature of released LBPs might be the result of structural and/or thermodynamic forces. Thus mechanisms must exist that promote their transformation into functional units. To further define these mechanisms, we developed methods to follow LBPs from their release by cultured cells to insertion in an air-liquid interface. When released, LBPs underwent structural transformation, but did not disperse, and typically preserved a spherical appearance for days. Nevertheless, they were able to modify surface tension and exhibited high surface activity when measured with a capillary surfactometer. When LBPs inserted in an air-liquid interface were analyzed by fluorescence imaging microscopy, they showed remarkable structural transformations. These events were instantaneous but came to a halt when the interface was already occupied by previously transformed material or when surface tension was already low. These results suggest that the driving force for LBP transformation is determined by cohesive and tensile forces acting on these particles. They further suggest that transformation of LBPs is a self-regulated interfacial process that most likely does not require structural intermediates or enzymatic activation.  相似文献   

16.
Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35 Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1 mm diameter channels and foaming in 500 μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1 mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases.  相似文献   

17.
This article documents a feasibility study on coating fine powders with protein solutions using a Würster spray coater (GPCG-1 from Glatt Air Techniques, Ramsey, NJ). Spray coating was based on a fluid-bed process where fluidized microcarriers were coated inside the Würster column and dried in the fluidization chamber. Recombinant human deoxyribonuclease (rhDNase) was used as the model protein. Lactose powders of two different size ranges, 53-125 and 125-250 mum, were used as the model microcarrier. The amount of protein applied was varied to obtain coatings of varying thickness. The extent of rhDNase loading determined experimentally was found to be consistent with the theoretical value and was also confirmed visually by scanning electron microscopy. The coating showed a strong integrity after being subjected to mechanical force. However, the protein suffered serious aggregation during coating, most likely due to the thermal stress of the process. Aggregation was significantly reduced when rhDNase was formulated with calcium ions, consistent with the observation that Ca(2+) thermally stabilized the protein (as determined by scanning microcalorimetry) in aqueous solution. Thus, our study demonstrates that spray coating, particularly when used in conjunction with rational stabilization strategies, is a feasible alternative to other methods of preparing dried pharmaceutical proteins. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 560-566, 1997.  相似文献   

18.
A recombinant human growth hormone preparation (rhGH) has been used to study the effects of temperature, pH and detergent (Brij 35) concentration on the selectivity, recovery and retention time, during hydrophobic interaction chromatography (HI-HPLC) on a TSK-phenyl-5PW column. The rhGH preparation used in the study contained two rhGH variants, e.g. LMWGH and Clip I. These variants are structurally very similar to rhGH and exhibited very similar chromatographic behaviour to rhGH, important in evaluation of selectivity. Structural studies revealed that LMWGH had lost the first N-terminal amino acid residue, phenylalanine. Clip I exhibited an increased molecular mass of 32.7 Da for the C-terminal tryptic fragment T18-T19. Temperature and pH were found to influence retention time, sharpness of peaks and selectivity. Furthermore, recoveries were improved from 50% to 99% for rhGH upon the introduction of 0.075% Brij 35, a non-ionic detergent, in the presence of 5% acetonitrile. The optimized HI-HPLC system was found to exhibit good recoveries and excellent selectivity. The system is suitable both as an in-process chromatographic purification step for rhGH, as well as an analytical test method for purity and potency.  相似文献   

19.
Interaction of sodium dodecyl sulfate (SDS) with a globular protein, trypsin, has been physicochemically studied in aqueous medium in detail using tensiometric, conductometric, calorimetric, fluorimetric, viscometric, and circular dichroism techniques. The results indicate that SDS-trypsin aggregates start to form at a surfactant concentration higher than the critical micelle concentration of pure SDS micelle. In contrast, the counterion binding decreases in the presence of trypsin. The free energies and enthalpies of micellization, interfacial adsorption, and entropy of micellization associated with the interaction have also been calculated. The values show that the interaction phenomenon is entropy controlled and endothermic in nature. The increase in viscosity is observed for the system of SDS-trypsin cluster above the critical micelle concentration of SDS micelle only. The aggregation number and interface polarity decrease compared to the values of micelles without protein. Circular dichroism spectra show the high alpha-helical content and unfolded structure of trypsin in the presence of SDS due to strong electrostatic repulsion leading to a probable "necklace and bead" model in the case of biopolymer-surfactant complexes.  相似文献   

20.
Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (Gs′) and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号