首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presented the first molecular phylogenetic analysis of the major clades of woody bamboos of the Old World tropics based on nuclear and chloroplast sequences (ITS, GBSSI and trnL-F). Sequence data from 53 species, representing 17 paleotropical woody bamboo genera, were analyzed using the maximum parsimony and Bayesian inference methods. All examined ingroup taxa were clustered into two clades, i.e., the Bambusinae+Dinochloa clade and the Melocanninae clade. The former clade included Bambusa, Bonia, Dendrocalamus, Dendrocalamopsis, Dinochloa, Gigantochloa, Molecalamus, Neomicrocalamus, Neosinocalamus, Oxytenanthera s. str. (sensu stricto), Racemobambos and Thyrsostachys. The Melocanninae clade consisted of Cephalostachyum, Leptocanna (better treated as part of Cephalostachyum), Melocanna, Pseudostachyum and Schizostachyum s. str. The subtribe Racemobambosinae and tribes Dendrocalameae and Oxytenanthereae were not supported and may be better placed in subtribe Bambusinae. The ovary characters seemed to be good criteria to distinguish these two clades. The reconstruction of ancestral fruit characters indicated that the bacoid caryopsis, namely, fleshy or berry-like fruits, was found to be scattered in three lineages of the examined paleotropical woody bamboos. Fruit characters are thus not reliable indicators of phylogeny and bacoid caryopsis likely represents a specialization for particular ecological conditions.  相似文献   

2.
A phylogenetic analysis of Bambusa and allies based on the plastid DNA non-coding regions rps16-trnQ, trnC-rpoB, trnH-psbA and trnD-T, and a partial nuclear GBSSI gene, was carried out. This included representatives from all four Bambusa subgenera (including type species), a group of segregate Southeast Asian genera distinctive by their climbing–scrambling culms (Dinochloa, Holttumochloa, Kinabaluchloa, Maclurochloa, Soejatmia, Sphaerobambos), and two other Bambusinae genera (Dendrocalamus, Gigantochloa). The results do not support the present subgeneric classification of Bambusa. The climbing Southeast Asian genera, all of which include species previously placed in Bambusa, are distinct from the “core Bambusa group” (type species and alliance) and the Bambusa complex generally.  相似文献   

3.
Parsimony-based phylogenetic analyses of the genus Guizotia were undertaken based on DNA sequence data from the following chloroplast DNA (cpDNA) regions: trnT-trnL, trnL-trnF, trnY-rpoB, trnC-petN, psbM-trnD and rps16-trnQ intergenic spacers, trnL, rps16 and matK-5′trnK introns and matK gene. Out of the 26 primers used in this study, 14 were newly designed. The study was conducted to determine (1) the closest relative of Guizotia abyssinica, (2) the taxonomic status of some Guizotia taxa and (3) the subtribal placement of Guizotia in the tribe Heliantheae. The analyses of the sequence data showed that G. abyssinica, G. scabra ssp. scabra, G. scabra ssp. schimperi and G. villosa are phylogenetically closely related. However, G. scabra ssp. schimperi appeared as the most closely related taxon to G. abyssinica. Based on this phylogenetic analysis, we suggest that the two subspecies of G. scabra are better treated as separate species. The analysis also clearly demonstrated that “Chelelu” and “Ketcha” are distinct Guizotia species. The trnT-trnL and trnL-trnF intergenic spacer-based phylogenetic analysis of various subtribes of the tribe Heliantheae strongly supports the placement of the genus Guizotia within the subtribe Milleriinae.  相似文献   

4.
The foliage leaf epidermis of 35 species representing 12 key genera of woody bamboos of the Asian tropics was investigated using light and scanning electron microscopy. The results indicated that papillae forms and distributional patterns around the stomatal apparatus of the abaxial foliage leaf epidermis were usually constant and were of great taxonomic significance at the specific and generic levels. However, papillae characters were not suitable for dividing subtribes within woody bamboos of the Asian tropics. On the basis of papillae characters, Schizostachyum s.s. and Cephalostachyum were confirmed, but their delimitations should be modified. The transfer of Leptocanna chinensis and Schizostachyum sanguineum into Cephalostachyum was supported, and Cephalostachyum virgatum and C .  pergracile were confirmed to be members of Schizostachyum s.s. The subtribe Racemobambosinae did not obtain support and Racemobambos appeared to be better placed in subtribe Bambusinae. Neomicrocalamus was supported as a close relative and better treated as a synonym of Racemobambos . Gigantochloa was closely related to Dendrocalamus .  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 411–423.  相似文献   

5.
Salvia subgenus Calosphace (Lamiaceae) is economically and ethnomedicinally significant and comprised of more than 500 species. Although strongly supported as monophyletic, it has received no comprehensive systematic research since the initial establishment of 91 taxonomic sections in 1939. Representative taxa of 73 sections of Calosphace were sampled to investigate the phylogenetic relationships and identify major lineages using chloroplast (intergenic spacer psbA-trnH) and nuclear ribosomal DNA (internal transcribed spacer). Phylogenetic analysis of the combined data sets established monophyly of seven sections (Blakea, Corrugatae, Erythrostachys, Hastatae, Incarnatae, Microsphace, and Sigmoideae) and four major lineages (S. axillaris, “Hastatae clade”, “Uliginosae clade”, and “core Calosphace”). Sections spanning two or more centers of diversity are not supported by our results; rather, supported relationships exhibit significant geographic structure. Mexico is supported as the geographic origin of Calosphace, and no more than seven dispersal events to South America are required to account for current disjunct distributions.  相似文献   

6.
Although polyphyly of Osmanthus has been suggested by different authors, the conclusions of previous studies have lacked robust support due to limited sampling or a paucity of phylogenetic characters. In this study, the phylogeny of Osmanthus was explored using sequences of three informative chloroplast regions (psbJ-petA, rpl32-trnL and rps16-trnQ), including all the five sections of the genus and eight closely related genera. The results confirm that Osmanthus, as presently circumscribed, is a polyphyletic group, containing three or four distinct lineages, i.e. sect. Leiolea (lineage I), sect. Notosmanthus (lineage III), sects. Osmanthus (excluding O. decorus), Siphosmanthus and Linocieroides (lineage IV), and an uncertain lineage including only O. decorus (lineage II). These results emphasize that the generic delimitation within subtribe Oleinae is in need of revision. In addition, this study found that the four cultivar groups of sweet osmanthus formed a paraphyletic clade, implying that cultivated sweet osmanthus might originate from several species.  相似文献   

7.
This is the first study to comprehensively address the phylogeny of the tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are recovered as non‐monophyletic. Members of the tribe belong to three distantly related lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny, five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson. The following changes in the classification of the Aleocharinae are proposed: (i) Amarochara Thomson is removed from the Oxypodini and placed in the tribe Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini; (iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed in synonymy with the subtribe name Dinardina Mulsant & Rey.  相似文献   

8.
In several studies we used the 5′-trnL(UAA)–trnF(GAA) region of the chloroplast DNA for phylogeographic reconstructions, gene diversity calculations and phylogenetic analyses among the genera Arabidopsis and Boechera. Despite the fact that extensive gene duplications are rare within the chloroplast genome of higher plants, within several genera of the Brassicaceae the anticodon domain of the trnF(GAA) gene exhibit extensive gene duplications with 1–12 tandemly repeated copies in close 5′-proximity of the functional gene. A recent re-examination and additional analysis of trnL(UAA)–trnF(GAA) regions from numerous cruciferous taxa not only reveal extensive trnF gene duplications, but also favour the hypothesis that in cruciferous taxa at least four independent phylogenetic lineages are characterized by these pseudogenes. Among these lineages there is one major clade of taxa carrying pseudogenes indicating an ancient split in crucifer evolution. In two case studies, Boechera and Arabidopsis, intra- and inter-molecular recombinations have been shown to be the reason for the reciprocal exchange of several similar motifs. However, functional constraints might favour two to three or five to six copies as shown for Arabidopsis and Boechera. Herein, we compare the occurrence and distribution of pseudogene copy number in the framework of a comprehensive survey of cpDNA haplotype variation in Boechera, the former genus Cardaminopsis and Arabidopsis thaliana and comment on the value of such kind of mutations in phylogenetic and evolutionary reconstructions.  相似文献   

9.
Cyathocline, a small genus, has been treated as a member of subtribe Grangeinae of tribe Astereae (Asteraceae), but has been neglected in molecular phylogenetic analyses of Astereae. Plastid trnL-F and nuclear ribosomal DNA ITS sequences were used to carry out phylogenetic analyses of Cyathocline (represented by C. purpurea) through maximum parsimony and Bayesian analyses. In addition, its karyotype, morphology and micromorphology were also investigated. The results show that in our three phylogenetic trees, C. purpurea is deeply nested within the Blumea clade and/or the Inulinae clade, and is closest to Blumea balsamifera (Inuleae, Inulinae). C. purpurea is similar to Blumea in chromosome size bimodality and to Inulinae in one single large oxalate crystal within each cell of the cypsela epidermis, which, together with molecular evidences, suggests strongly that Cyathocline should be transferred from Astereae to Inuleae subtribe Inulinae. Although C. purpurea has many anomalous features, its most characters still are within a wide range of morphological variations of Blumea. DNA data and the karyotypic character support to merge C. purpurea into Blumea. As a result, the new combination Blumea purpurea (O. Kuntze) W.P. Li was made.  相似文献   

10.
With 71 genera and over 2700 described species, Philonthina is the most speciose subtribe of rove beetle tribe Staphylinini and forms a major component of the largest remaining higher systematics challenge in Staphylinini, the ‘Staphylinini propria’ clade. A related systematics issue concerns the position of the genus Holisus (Hyptiomina), which was recovered within the Neotropical philonthine lineage in several recent analyses of morphology. With the aims of resolving the phylogeny of Philonthina and the position and, thus, validity of Hyptiomina, we performed phylogenetic analyses of the tribe Staphylinini based on molecular (six genes, 4471 bp) and morphological (113 characters) data including 138 taxa from all relevant lineages of Staphylinini. We found that ‘Staphylinini propria’ is a monophylum consisting of six lineages: current subtribes Anisolinina, Philonthina, Staphylinina and Xanthopygina; and two new subtribes, Algonina Schillhammer and Brunke and Philothalpina Chatzimanolis and Brunke. While the previously hypothesized Neotropical lineage of Philonthina was corroborated, Holisus was recovered as a separate subtribe, outside of Philonthina, within an informal ‘Southern Hemisphere clade’. Based on our analyses, we propose tentative new concepts of the polyphyletic genera Belonuchus and Philonthus. We propose the following taxonomic changes: synonymy of the subtribes Staphylinina Latreille (valid name) and Eucibdelina Sharp; resurrection of genera Barypalpus Cameron and Trapeziderus Motschulsky from synonymy with Rientis Sharp and Belonuchus Nordmann, respectively; transfer of 38 Belonuchus species, 16 Hesperus Fauvel species and one Philonthus Stephens species to Trapeziderus as new combinations; transfer of two Hesperus species to Eccoptolonthus Bernhauer as new combinations; transfer of one Belonuchus species to Paederomimus Sharp as a new combination; and transfer of Pridonius Blackwelder new status from its position as a subgenus of Quedius (subtribe Quediina) to Philonthina as a genus, and new combinations for its two described species.  相似文献   

11.
Hymenonema (Compositae, tribe Cichorieae) together with the genera Catananche, Gundelia, and Scolymus forms the subtribe Scolyminae. It is endemic to Greece and consists of two species, Hymenonema laconicum and Hymenonema graecum, which occur in the south Peloponnisos and central Aegean area, respectively. The present contribution aims at a phylogenetic reconstruction of evolutionary relationships among the 12 species of the subtribe, focusing on the temporal and spatial framework for its evolution. The phylogenetic relationships among the members of Scolyminae were inferred from molecular data based on the multi-copy region of the nrDNA internal transcribed spacers ITS1 and ITS2, two intergenic spacers of the cpDNA (trnL-trnF, rpl32-trnL), and one single-copy nuclear region (D10). The gene trees were reconstructed using Bayesian phylogenetic methods. All gene trees support the monophyly of Hymenonema and the sister-group relationship with the genus Scolymus. The further sister-group relationship of this group (HymenonemaScolymus) with Catananche is also supported by nrDNA and cpDNA analyses. Finally, a species tree (inferred in a Bayesian coalescent framework) was reconstructed and dates the divergence time between the two Hymenonema species to the Pleistocene (around 1.3 Ma ago). Maximum likelihood-based biogeographical reconstructions suggest a Miocene (pre-Messinian) differentiation of the subtribe on the northern Tethyan platform, followed by Miocene/Pliocene dispersal events to the western Mediterranean and North-African platforms and final, small-scale vicariance events within the genera in the Pleistocene.  相似文献   

12.
Phylogenetic relationships among the species of Lallemantia and its close allies (Lamiaceae, Mentheae) were investigated using nuclear (ITS) and plastid (trnL, trnL/F, trnS/G, rpl32, and rpl32-trnL) DNA sequences. Phylogenetic results from Bayesian and parsimony analyses show that (1) Lallemantia is monophyletic, (2) Hymenocrater is nested within Nepeta, and (3) Lallemantia is more closely related to Dracocephalum than other genera in Nepetinae. Based on the molecular results, the genus Lallemantia comprises two disparate lineages, with each lineage supported by distinct morphological characters (e.g. floral structures and pollen grains).  相似文献   

13.
Recent molecular systematic investigations suggested that Ferula, an umbellifer genus of about 170 species, is polyphyletic, with its members placed in the apioid superclade and within tribe Scandiceae. We analyzed ITS sequence variation from 134 accessions of Apiaceae, including 83 accessions (74 species) of Ferula to ascertain the phylogenetic position of the genus within the family. Phylogenetic analyses of these data using maximum parsimony, Bayesian, and neighbor-joining methods support the monophyly of Ferula upon the addition of Dorema and Leutea (as Ferula sensu lato) and its placement in tribe Scandiceae. Ferula sensu is closely allied with other major lineages of Scandiceae, corresponding to subtribes Scandicinae, Daucinae, and Torilidinae. Therefore, we recognize the Ferula clade as subtribe Ferulinae. Another addition to tribe Scandiceae is a clade composed of genera Glaucosciadium and Mozaffariania. The three accessions of Ferula misplaced in the apioid superclade represent a species of Silaum.  相似文献   

14.
Chatzimanolis, S., Cohen, I. M., Schomann, A. & Solodovnikov, A. (2010). Molecular phylogeny of the mega‐diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae). —Zoologica Scripta, 39, 436–449. Phylogeny of the rove beetle tribe Staphylinini is explored by parsimony and Bayesian analyses of sequences of four genes (COI, wingless, Topoisomerase I, and 28S) for 43 ingroup (various genera of Staphylinini) and eight outgroup (two genera of Paederinae, six genera of other tribes of Staphylininae) taxa. Analyses were conducted for each gene independently and for the concatenated data set. Results of the most robust combined analyses were compared with the morphology‐based phylogenies of Staphylinini (‘test phylogeny’), and with the conventional classification of this tribe. Molecular results were congruent with the ‘test phylogeny’ in the following: ancestors of Staphylinini were ‘Quediina‐like’ lineages; formal subtribe Quediina mixes at least two relatively basal groups, ‘Quediina propria’ and ‘southern Quediina’; specialized subtribe Amblyopinina is an internal clade within ‘southern Quediina’; a relatively deeply nested ‘Staphylinini propria’ that unites current subtribes Staphylinina, Eucibdelina, Anisolinina, Xanthopygina and Philonthina is well supported as a monophyletic group. In strong contrast with morphology, molecular data place the tribes Othiini and Xantholinini nested within Staphylinini. Molecular results strongly conflict with morphology by uniting morphologically very different genera Holisus and Atanygnathus in one clade that has uncertain position within Staphylinini. Consistently with the most congruent areas of the morphology‐ and molecular‐based phylogenies, taxonomic changes are implemented for the formal subtribes Quediina and Amblyopinina.  相似文献   

15.
The genus Dyckia (Bromeliaceae) comprises more than 150 terrestrial or epilithic species with a strongly xeromorphic habit. Most of its members belong to the azonal rock vegetation of Neotropical savannas and forests of Brazil and adjacent countries. Dyckia is relatively species-rich compared with its closest relatives Encholirium (27 species) and Deuterocohnia (17 species). Here, we present the first molecular phylogenetic analysis of Dyckia using DNA sequence data from six plastid loci (matK gene, rps16 intron, petD intron, rpl32-trnL, rps16-trnK and trnD-trnT) and a portion of the nuclear gene phyC. A total of 124 accessions were included, corresponding to 79 taxa from six genera. Phylogenetic trees were generated using parsimony, likelihood and Bayesian methods. DNA sequence variation among Dyckia species turned out to be extremely low, and phylogenies were poorly resolved. The monophyly of Dyckia is supported, whereas evidence is provided that Encholirium is paraphyletic. Based on a dated plastid DNA tree, Dyckia experienced a recent radiation starting around 2.9 million years ago. Four major clades could be identified that roughly correspond to the geographic origin of the samples. A parsimony network based on plastid DNA haplotypes shows a star-like pattern, indicating recent range expansions. Our data are compatible with a scenario where Dyckia and Encholirium diverged in northeastern Brazil, whereas one lineage of Dyckia dispersed to southern Brazil from where a rapid colonization of suitable habitats was initiated. We discuss our results in relation to species delimitation in Dyckia.  相似文献   

16.
Linnaeoideae is a small subfamily of erect or creeping shrubs to small trees in Caprifoliaceae that exhibits a wide disjunct distribution in Eurasia, North America and Mexico. Most taxa of the subfamily occur in eastern Asia and Mexico but the monospecific genus Linnaea has a circumboreal to north temperate distribution. In this study, we conducted phylogenetic and biogeographic analyses for Linnaeoideae and its close relatives based on sequences of the nuclear ribosomal ITS and nine plastid (rbcL, trnS-G, matK, trnL-F, ndhA, trnD-psbM, petB-D, trnL-rpl32 and trnH-psbA) markers. Our results support that Linnaeoideae is monophyletic, consisting of four eastern Asian lineages (Abelia, Diabelia, Dipelta and Kolkwitzia), the Mexican Vesalea, and Linnaea. The Mexican Vesalea was formerly placed in Abelia, but it did not form a clade with the eastern Asian Abelia; instead Vesalea and Linnaea are sisters. The divergence time between the eastern Asian lineages and the Mexican Vesalea plus the Linnaea clade was dated to be 50.86 Ma, with a 95% highest posterior density of 42.8 Ma (middle Eocene) to 60.19 Ma (early Paleocene) using the Bayesian relaxed clock estimation. Reconstructed ancestral areas indicated that the common ancestor of Linnaea plus Vesalea may have been widespread in eastern Asia and Mexico or originated in eastern Asia during the Eocene and likely migrated across continents in the Northern Hemisphere via the North Atlantic Land Bridges or the Bering Land Bridge. The Qinling Mountains of eastern Asia are the modern-day center of diversity of Kolkwitzia-Dipelta-Diabelia clade. The Diabeliaclade became highly diversified in Japan and eastern China. Populations of Diabelia serrata in Japan and eastern China were found to be genetically identical in this study, suggesting a recent disjunction across the East China Sea, following the last glacial event.  相似文献   

17.
The internal transcribed spacer (ITS) region of nuclear ribosomal DNA, trnL and trnL-F genes of Cardamine glechomifolia Levl. (family Brassicaceae) were sequenced and analyzed with the sequence of related Cardamine species retrieved from NCBI GenBank to detect pattern of evolutionary differentiation. All trees resulting from combined sequence analyses data of ITS, trnL and trnL-F gene resolve that C. glechomifolia – an endemic species to South Korea clade with Cardamine microzyga (100% bootstrap support). The evolutionary history was inferred using the Maximum Parsimony method. The consistency index is (0.588235), the retention index is (0.687500), and the composite index is 0.519622 (0.404412) for all sites and parsimony-informative sites (in parentheses). The result of the analysis using Maximum Parsimony was found congruence with Maximum Likelihood method and in Baseyan analysis.  相似文献   

18.
19.
A phylogenetic study of selected fleshy-fruited genera of the Myrtaceae was conducted using sequences from the ITS region of nuclear DNA and the psbA-trnH region of plastid DNA. Studies to date have suggested that the fleshy-fruited state has arisen on several occasions in the Myrtaceae. The previously accepted and predominantly Neotropical tribe Myrteae has traditionally been divided into three groups, the subtribes Myrtinae, Eugeniinae and Myrciinae. This subtribal arrangement is analysed in detail here for the first time. The monophyly of the tribe and subtribes are tested and relationships of the genera within them, in particular those of the Myrciinae and anomalous genera sometimes associated with it, are discussed. Combined analyses of these two DNA regions revealed 40 shortest trees, all of which resolve Myrteae (excluding the Acmena group) as monophyletic. Myrciinae appears to be monophyletic whereas Myrtinae and Eugeniinae appear polyphyletic. The phylogenetic positions and relationships of the anomalous genera Myrceugenia, Luma and Blepharocalyx are unclear, but Myrceugenia is never included within the Myrciinae s.str. A Myrciinae s.str. clade emerges within which Myrcia, Calyptranthes and Marlierea appear polyphyletic. Clades emerge, however, that may reflect some natural groupings within the subtribe.We thank David Simpson, Lazlo Csiba, Edith Kapinos and many others from Kew for invaluable advice and support. It would not have been possible to collect the Brazilian samples without the patience and careful guidance of Dr. Vinicius C. Souza, Fiorella F. Mazine (Universidade de São Paulo, ESALQ), Professor Gert Hatschbach, Joel M. de Silva (Museu Botânico Municipal, Curitiba) and many others from the ESA and MBM herbaria. Thanks also to Les Landrum, Andrew Salywon, Marcos Sobral and an anonymous reviewer for helpful comments at different stages of this work. British Airways are gratefully acknowledged for providing a flight to Brazil under their Community and Conservation programme.  相似文献   

20.
Cyrtomidictyum Ching and Cyrtogonellum Ching are two eastern Asian endemic genera whose taxonomic affinities and phylogenetic relationships have long been controversial. The main uncertainty surrounds the separation of the two genera from the species-rich genus Polystichum. Here we present a phylogenetic study focusing on the phylogenetic relationships of these polystichoid ferns. We reconstructed the relationships based on DNA sequence variation in four chloroplast genome regions, rbcL, atpB, and the intergenic spacers (IGS) rps4-trnS and trnL-trnF. Maximum likelihood and Bayesian inference analyses confirm earlier results that were based on less comprehensive taxon sampling and either only a single gene (rbcL) or two IGS (rps4-trnS and trnL-trnF). Cyrtomidictyum is the sister of the clade of polystichoid ferns that includes Cyrtogonellum, Cyrtomium subser. Balansana and three sections of Polystichum. Cyrtogonellum groups with several species of Polystichum, and constitutes the sister taxon to Polystichum sect. Sphaenopolystichum. We support the recognition of Cyrtomidictyum as circumscribed initially, rather than expansion of the genus to include either several Polystichum species or Cyrtogonellum, some Polystichum and Cyrtomium species. The monophyly of Cyrtomidictyum is supported by morphological characters such as once-pinnate leaves, free venation, prolongated leaf apices, and exindusiate sori. Two synapomorphic indels in the chloroplast genome, one 15-bp deletion in rps4-trnS, and one 3-bp insertion in trnL-trnF further differentiate Cyrtomidictyum from other polystichoid ferns. The close affinity of Cyrtogonellum to section Sphaenopolystichum of Polystichum s.s. is highly supported by molecular data. However, no shared morphological characters or molecular indels have been detected, although the distinctness of Cyrtogonellum is shown by a 13-bp insertion in the rps4-trnS alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号