共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse Cerberus-like (Cer-l) is a neural inducer molecule, capable of inhibiting Nodal and BMP-4 signals in the extracelular space. The cer-l expression domain in the Anterior Visceral Endoderm (AVE) and prechordal plate, tissues involved in head induction and patterning, respectively, suggested a role for this gene in head formation. However, animals homozygous for the cer-l null allele failed to show any abnormality, leading us to propose the existence of other factor(s) that might compensate for cer-l loss-of-function. Since goosecoid (gsc) shares some domains of expression with cer-l and was shown to be essential for head morphogenesis, we tested its ability to interact genetically with cer-l. With this aim we generated cer-l;gsc double mutants. These animals were analyzed at birth for skeletal defects and revealed the same phenotype as gsc-/- single mutants. We also investigated the proper patterning of structures adjacent to the prechordal plate by performing in situ hybridization of HNF-3beta, Six-3 and BF-1, genes whose expression domains remained unchanged. In conclusion, the analysis carried out indicated that gsc does not compensate for cer-l loss-of-function and that these genes do not interact genetically. 相似文献
2.
Anderson RM Lawrence AR Stottmann RW Bachiller D Klingensmith J 《Development (Cambridge, England)》2002,129(21):4975-4987
In this study we investigate the roles of the organizer factors chordin and noggin, which are dedicated antagonists of the bone morphogenetic proteins (BMPs), in formation of the mammalian head. The mouse chordin and noggin genes (Chrd and Nog) are expressed in the organizer (the node) and its mesendodermal derivatives, including the prechordal plate, an organizing center for rostral development. They are also expressed at lower levels in and around the anterior neural ridge, another rostral organizing center. To elucidate roles of Chrd and Nog that are masked by the severe phenotype and early lethality of the double null, we have characterized embryos of the genotype Chrd(-/-);Nog(+/-). These animals display partially penetrant neonatal lethality, with defects restricted to the head. The variable phenotypes include cyclopia, holoprosencephaly, and rostral truncations of the brain and craniofacial skeleton. In situ hybridization reveals a loss of SHH expression and signaling by the prechordal plate, and a decrease in FGF8 expression and signaling by the anterior neural ridge at the five-somite stage. Defective Chrd(-/-);Nog(+/-) embryos exhibit reduced cell proliferation in the rostral neuroepithelium at 10 somites, followed by increased cell death 1 day later. Because these phenotypes result from reduced levels of BMP antagonists, we hypothesized that they are due to increased BMP activity. Ectopic application of BMP2 to wild-type cephalic explants results in decreased FGF8 and SHH expression in rostral tissue, suggesting that the decreased expression of FGF8 and SHH observed in vivo is due to ectopic BMP activity. Cephalic explants isolated from Chrd;Nog double mutant embryos show an increased sensitivity to ectopic BMP protein, further supporting the hypothesis that these mutants are deficient in BMP antagonism. These results indicate that the BMP antagonists chordin and noggin promote the inductive and trophic activities of rostral organizing centers in early development of the mammalian head. 相似文献
3.
Belo JA Bachiller D Agius E Kemp C Borges AC Marques S Piccolo S De Robertis EM 《Genesis (New York, N.Y. : 2000)》2000,26(4):265-270
Mouse cerberus-like (cer-l) is a member of the Cerberus/Dan family of secreted factors. As other members of this family of proteins, Cer-l functions in the extracellular space, inhibiting signaling molecules. Here we show that the neural-inducing and mesoderm-inhibiting activities of Cer-l result from specific binding to BMP and Nodal molecules, respectively. These properties resemble the ones from the related factor Xenopus Cerberus. However, Xenopus Cerberus in addition to BMP4 and Nodal also binds to and inhibits Wnt proteins. We show that Cer-l does not directly inhibit Wnt signals. A null allele of the mouse Cer-l gene was generated by targeted inactivation in ES cells. Homozygous embryos show no anterior patterning defects, are born alive, and are fertile. Since mouse Cer-l and Xenopus Cerberus differ in biochemical activities, we propose the existence of additional members of this family of inhibitors, which may compensate for the loss of cer-l. 相似文献
4.
Members of the BMP and Wnt protein families play a relevant role in physiologic and pathologic bone turnover. Extracellular antagonists are crucial for the modulation of their activity. Lack of expression of the BMP antagonist noggin by osteoinductive, carcinoma-derived cell lines is a determinant of the osteoblast response induced by their bone metastases. In contrast, osteolytic, carcinoma-derived cell lines express noggin constitutively. We hypothesized that cancer cell-derived noggin may contribute to the pathogenesis of osteolytic bone metastasis of solid cancers by repressing bone formation. Intra-osseous xenografts of PC-3 prostate cancer cells induced osteolytic lesions characterized not only by enhanced osteoclast-mediated bone resorption, but also by decreased osteoblast-mediated bone formation. Therefore, in this model, uncoupling of the bone remodeling process contributes to osteolysis. Bone formation was preserved in the osteolytic lesions induced by noggin-silenced PC-3 cells, suggesting that cancer cell-derived noggin interferes with physiologic bone coupling. Furthermore, intra-osseous tumor growth of noggin-silenced PC-3 cells was limited, most probably as a result of the persisting osteoblast activity. This investigation provides new evidence for a model of osteolytic bone metastasis where constitutive secretion of noggin by cancer cells mediates inhibition of bone formation, thereby preventing repair of osteolytic lesions generated by an excess of osteoclast-mediated bone resorption. Therefore, noggin suppression may be a novel strategy for the treatment of osteolytic bone metastases. 相似文献
5.
6.
Gerlach LM Hutson MR Germiller JA Nguyen-Luu D Victor JC Barald KF 《Development (Cambridge, England)》2000,127(1):45-54
Bone morphogenetic protein 4 (BMP4) is known to regulate dorsoventral patterning, limb bud formation and axis specification in many organisms, including the chicken. In the chick developing inner ear, BMP4 expression becomes localized in two cell clusters at the anterior and posterior edges of the otic epithelium beginning at stage 16/17 and is expressed in presumptive sensory tissue at later stages. This restricted spatiotemporal pattern of expression occurs just prior to the otocyst's transition to a more complex three-dimensional structure. To further analyze the role of BMP4 in avian otic morphogenesis, cells expressing BMP4 or its antagonist, noggin, were grown on agarose beads and implanted into the periotic mesenchyme surrounding the chick otocyst. Although the BMP4-producing cells had no effect on the mature inner ear structure when implanted alone, noggin-producing cells implanted adjacent to the BMP4 cell foci prevented normal semicircular canal development. Beads implanted at the anterior BMP4 focus eliminated the anterior and/or the horizontal canals. Noggin cells implanted at the posterior focus eliminated the posterior canal. Canal loss was prevented by co-implantation of BMP4 cell beads next to noggin beads. An antibody to the chick hair cell antigen (HCA) was used to examine sensory cell distribution, which was abnormal only in the affected tissues of noggin-exposed inner ears. These data suggest a role for BMP4 in the accurate and complete morphological development of the semicircular canals. 相似文献
7.
Hens JR Dann P Zhang JP Harris S Robinson GW Wysolmerski J 《Development (Cambridge, England)》2007,134(6):1221-1230
The mammary glands develop initially as buds arising from the ventral embryonic epidermis. Recent work has shed light on signaling pathways leading to the patterning and formation of the mammary placodes and buds in mouse embryos. Relatively little is known of the signaling pathways that initiate branching morphogenesis and the formation of the ducts from the embryonic buds. Previous studies have shown that parathyroid hormone-related protein (PTHrP; also known as parathyroid hormone-like peptide, Pthlh) is produced by mammary epithelial cells and acts on surrounding mesenchymal cells to promote their differentiation into a mammary-specific dense mesenchyme. As a result of PTHrP signaling, the mammary mesenchyme supports mammary epithelial cell fate, initiates ductal development and patterns the overlying nipple sheath. In this report, we demonstrate that PTHrP acts, in part, by sensitizing mesenchymal cells to BMP signaling. PTHrP upregulates BMP receptor 1A expression in the mammary mesenchyme, enabling it to respond to BMP4, which is expressed within mesenchymal cells underlying the ventral epidermis during mammary bud formation. We demonstrate that BMP signaling is important for outgrowth of normal mammary buds and that BMP4 can rescue outgrowth of PTHrP(-/-) mammary buds. In addition, the combination of PTHrP and BMP signaling is responsible for upregulating Msx2 gene expression within the mammary mesenchyme, and disruption of the Msx2 gene rescues the induction of hair follicles on the ventral surface of mice overexpressing PTHrP in keratinocytes (K14-PTHrP). Our data suggest that PTHrP signaling sensitizes the mammary mesenchyme to the actions of BMP4, triggering outgrowth of the mammary buds and inducing MSX2 expression, which, in turn, leads to lateral inhibition of hair follicle formation within the developing nipple sheath. 相似文献
8.
Yanagita M 《Cytokine & growth factor reviews》2005,16(3):309-317
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily, and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated by certain classes of molecules that are recently recognized as BMP antagonists. BMP antagonists function through direct association with BMPs, thus prohibiting BMPs from binding their cognate receptors. In this review, the classification and functions of BMP antagonists will be discussed, especially focusing on the new family of tissue-specific BMP antagonists composed of uterine sensitization-associated gene 1 (USAG-1) and sclerostin. 相似文献
9.
Robert K. Adair 《Bioelectromagnetics》1998,19(2):136-137
Blank and Goodman [(1997): Bioelectromagnetics 18:111–115] suggest that weak extremely low frequency (ELF) electric and magnetic fields affect intracellular DNA directly. We show that such a conclusion is not in accord with physical principles. Bioelectromagnetics 19: 136–137, 1998. © 1998 Wiley-Liss, Inc. 相似文献
10.
Expression of four BMP antagonist genes, noggin, chordin, gremlin and Follistatin, was examined during chick feather development. Although expression of noggin and chordin was not detected, gremlin and Follistatin were expressed differentially in feather buds. The differential expression patterns of gremlin and Follistatin change dynamically from the nascent inter-feather bud region to the posterior domain of the feather bud. 相似文献
11.
12.
BMP4 substitutes for loss of BMP7 during kidney development 总被引:3,自引:0,他引:3
Oxburgh L Dudley AT Godin RE Koonce CH Islam A Anderson DC Bikoff EK Robertson EJ 《Developmental biology》2005,286(2):637-646
Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown. To address this issue, we created embryos exclusively expressing BMP4 under control of the BMP7 locus. Surprisingly, this novel knock-in allele efficiently rescues kidney development. These results demonstrate unequivocally that these structurally divergent BMP family members, sharing only minimal sequence similarity can function interchangeably to activate all the essential signaling pathways for growth and morphogenesis of the kidney. Thus, we conclude that partially overlapping expression patterns of BMPs serve to modulate strength of BMP signaling rather than create discrete fields of ligands with intrinsically different signaling properties. 相似文献
13.
Spíchal L Krystof V Paprskárová M Lenobel R Styskala J Binarová P Cenklová V De Veylder L Inzé D Kontopidis G Fischer PM Schmülling T Strnad M 《The Journal of biological chemistry》2007,282(19):14356-14363
Cytokinins are a class of plant hormones that regulate the cell cycle and diverse developmental and physiological processes. Several compounds have been identified that antagonize the effects of cytokinins. Based on structural similarities and competitive inhibition, it has been assumed that these anticytokinins act through a common cellular target, namely the cytokinin receptor. Here, we examined directly the possibility that various representative classical anticytokinins inhibit the Arabidopsis cytokinin receptors CRE1/AHK4 (cytokinin response 1/Arabidopsis histidine kinase 4) and AHK3 (Arabidopsis histidine kinase 3). We show that pyrrolo[2,3-d]pyrimidine and pyrazolo[4,3-d]pyrimidine anticytokinins do not act as competitors of cytokinins at the receptor level. Flow cytometry and microscopic analyses revealed that anticytokinins inhibit the cell cycle and cause disorganization of the microtubular cytoskeleton and apoptosis. This is consistent with the hypothesis that they inhibit regulatory cyclin-dependent kinase (CDK) enzymes. Biochemical studies demonstrated inhibition by selected anti-cytokinins of both Arabidopsis and human CDKs. X-ray determination of the crystal structure of a human CDK2-anticytokinin complex demonstrated that the antagonist occupies the ATP-binding site of CDK2. Finally, treatment of human cancer cell lines with anticytokinins demonstrated their ability to kill human cells with similar effectiveness as known CDK inhibitors. 相似文献
14.
Scientists in the fields of nutrition and other biological sciences often design factorial studies to test the hypotheses of interest and importance. In the case of two-factorial studies, it is widely recognized that the analysis of factor effects is generally based on treatment means when the interaction of the factors is statistically significant, and involves multiple comparisons of treatment means. However, when the two factors do not interact, a common understanding among biologists is that comparisons among treatment means cannot or should not be made. Here, we bring this misconception into the attention of researchers. Additionally, we indicate what kind of comparisons among the treatment means can be performed when there is a nonsignificant interaction among two factors. Such information should be useful in analyzing the experimental data and drawing meaningful conclusions. 相似文献
15.
Wnt signaling plays an essential role in induction and development of the limb. Missing digits are one consequence of the reduced Wnt signaling in Wnt7a null mice, while extra digits result from excess Wnt signaling in mice null for the Wnt antagonist Dkk1. The extra digits and expanded apical ectodermal ridge (AER) of Dkk1-deficient mice closely resemble En1 null mice. To evaluate the in vivo interaction between En1 and the canonical Wnt signaling pathway, we generated double and triple mutants combining the hypomorphic doubleridge allele of Dkk1 with null alleles of En1 and Wnt7a. Reducing Dkk1 expression in Dkk1d/+Wnt7a-/- double mutants prevented digit loss, indicating that Wnt7a acts through the canonical pathway during limb development. Reducing Dkk1 levels in Dkk1d/dEn1-/- double mutants resulted in severe phenotypes not seen in either single mutant, including fused bones in the autopod, extensive defects of the zeugopod, and loss of the ischial bone. The subsequent elimination of Wnt7a in Dkk1d/dEn1-/-Wnt7a-/- triple mutants resulted in correction of most, but not all, of these defects. The failure of Wnt7a inactivation to completely correct the limb defects of Dkk1d/dEn1-/- double mutants indicates that Wnt7a is not the only gene regulated by En1 during development of the mouse limb. 相似文献
16.
We report the identification of two distinct noggin genes in the tetrapod Xenopus tropicalis. Noggin functions to antagonize BMP signaling in many developmental contexts, and much work has explored its role in early vertebrate development. We have identified two noggin genes in the tropical clawed frog, X. tropicalis, a diploid anuran which is being explored for its potential as a genetic model system for early vertebrate development. Here we report the cloning and characterization of the Xenopus tropicalis noggin1 and noggin2 genes, which have distinct expression domains in the early embryo with one overlapping domain in the anterior neural tissue. X. tropicalis noggin1 expression is very similar to that of noggin in Xenopus laevis, with expression beginning in the blastula organizer region and continuing through gastrulation and neurulation in the organizer and notochord. Later, it is also expressed in the anterior neural ridge and subsequent forebrain; noggin1 is also expressed in the pharyngeal arches after neural tube closure. At the tadpole stage expression is maintained in the dorsal neural tube and is present in the otic vesicle. However, the expression of noggin2 is much more similar to the expression of noggin2 in D. rerio with expression in the forebrain, hindbrain, and somites, but unlike D. rerio, X. tropicalis noggin2 is expressed in the heart by stage 28. This work presents the first example of a tetrapod with at least two noggin genes. 相似文献
17.
18.
TGF-beta activated kinase 1 (TAK1) is a MAP kinase kinase kinase (MAPKKK) that has been shown to function downstream of BMPs and TGF-beta (J. Biol. Chem. 275 (2000) 17647; EMBO J. 17 (1998) 1019; Science 270 (1995) 2008), as well as in the interleukin-1 (IL-1) signaling pathway (J. Biol. Chem. 276 (2001) 3508; Nature 398 (1999) 252). Using immunohistochemistry (IHC), we demonstrate that TAK1 is expressed ubiquitously during early development. At mid-gestation, TAK1 expression becomes more restricted, with high levels seen specifically during development of diverse organs and tissues including the nervous system, testis, kidney, liver and gut. Additionally, TAK1 expression is seen in the developing lung and pancreas. Our results suggest that TAK1 may play multiple roles in mouse development. 相似文献
19.
Cell cycling and differentiation do not require the retinoblastoma protein during early Xenopus development 总被引:1,自引:0,他引:1
The retinoblastoma protein (pRb) is a central regulator of the cell cycle, controlling passage through G1 phase. Moreover, pRb has also been shown to play a direct role in the differentiation of multiple tissues, including nerve and muscle. Rb null mice display embryonic lethality, although recent data have indicated that at least some of these defects are due to placental insufficiency. To investigate this further, we have examined the role of pRb in early development of the frog Xenopus laevis, which develops without the need for a placenta. Surprisingly, we see that loss of pXRb has no effect on either cell cycling or differentiation of neural or muscle tissue, while overexpression of pXRb similarly has no effects. We demonstrate that, in fact, pXRb is maintained in a hyperphosphorylated and therefore inactive state early in development. Therefore, Rb protein is not required for cell cycle control or differentiation in early embryos, indicating unusual control of these G1/G0 events at this developmental stage. 相似文献