首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different plasmid-vector systems were developed which allow the efficient production and presentation of protein antigens in antigen-presenting cells (APC) by means of virulence-attenuated bacteria. The first antigen-delivery system is based on the secretion machinery of the Escherichia coli hemolysin (HlyA-type I secretion system), which transports proteins, possessing the specific HlyA secretion signal (HlyA(s)) at the C-terminus, across both membranes of gram-negative bacteria. This system functions in all gram-negative bacteria that possess the TolC-analogous protein in the outer membrane. This outer membrane protein is necessary for the stable anchoring of the type I secretion apparatus in the cell envelope. Suitable HlyA(s)-fused antigens are secreted with high efficiency by E. coli and by virulence-attenuated strains of Salmonella, Shigella, Vibrio cholerae and Yersinia enterocolitica. The other vector system expresses the heterologous antigen under the control of an eukaryotic promoter in a similar fashion as in plasmids commonly used for vaccination with naked DNA. This plasmid DNA is introduced into APCs with the help of virulence-attenuated self-destructing Listeria monocytogenes mutants. After synthesis of the heterologous protein, epitopes of the antigen are presented by the APC together with MHC class I molecules. This system functions in macrophages and dendritic cells in vitro and can also be used in a modified form in animal models.  相似文献   

2.
Live attenuated Salmonella strains have been extensively explored as oral delivery systems for recombinant vaccine antigens and effector proteins with immunoadjuvant and immunomodulatory potential. The feasibility of this approach was demonstrated in human vaccination trials for various antigens. However, immunization efficiencies with live vaccines are generally significantly lower compared to those monitored in parenteral immunizations with the same vaccine antigen. This is, at least partly, due to the lack of secretory expression systems, enabling large-scale extracellular delivery of vaccine and effector proteins by these strains. Because of their low complexity and the terminal location of the secretion signal in the secreted protein, Type I (ATP-binding cassette) secretion systems appear to be particularly suited for development of such recombinant extracellular expression systems. So far, the Escherichia coli hemolysin system is the only Type I secretion system, which has been adapted to recombinant protein secretion in Salmonella. However, this system has a number of disadvantages, including low secretion capacity, complex genetic regulation, and structural restriction to the secreted protein, which eventually hinder high-level in vivo delivery of recombinant vaccines and effector proteins. Thus, the development of more efficient recombinant protein secretion systems, based on Type I exporters can help to improve efficacies of live recombinant Salmonella vaccines. Type I secretion systems, mediating secretion of bacterial surface layer proteins, such as RsaA in Caulobacter crescentus, are discussed as promising candidates for improved secretory delivery systems.  相似文献   

3.
The antibody-inducing properties of a bacterial/viral bivalent DNA vaccine (pRECFA), expressing a peptide composed of N- and C-terminal amino acid sequences of the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) fused with an inner segment encoding the major structural subunit of enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae (CFA/I), was evaluated in BALB/c mice following intramuscular immunization. The bivalent pRECFA vaccine elicited serum antibody responses, belonging mainly to the IgG2a subclass, against both CFA/I and HSV gD proteins. pRECFA-elicited antibody responses cross-reacted with homologous and heterologous ETEC fimbrial antigens as well as with type 1 and type 2 HSV gD proteins, which could bind and inactivate intact HSV-2 particles. On the other hand, CFA/I-specific antibodies could bind but did not neutralize the adhesive functions of the bacterial CFA/I fimbriae. In spite of the functional restriction of the antibodies targeting the bacterial antigen, the present evidence suggests that fusion of heterologous peptides to the HSV gD protein represents an alternative for the design of bivalent DNA vaccines able to elicit serum antibody responses.  相似文献   

4.
Secretion of heterologous proteins into the culture supernatant in laboratory strains of Escherichia coli is possible by utilizing a Type I secretion system (T1SS). One prominent example for a T1SS is based on the hemolysin A toxin. With this system, heterologous protein secretion has already been achieved. However, no cultivations in a defined mineral medium and in stirred tank bioreactors have been described in literature up to now, hampering the broad applicability of the system. In this study, a mineral medium was developed for cultivation under defined conditions. With this medium, the full potential and advantage of a secretion system in E. coli (low secretion of host proteins, no contamination with proteins from complex media compounds) can now be exploited. Additionally, quantification of the protein amount in the supernatant was demonstrated by application of the Bradford assay. In this work, host cell behavior was described in small scale by online monitoring of the oxygen transfer rate. Scalability was demonstrated by stirred tank fermentation yielding 540 mg/L HlyA1 in the supernatant. This work enhances the applicability of a protein secretion system in E. coli and paves the way for an industrial application.  相似文献   

5.
《Biotechnology advances》2017,35(5):565-574
Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic bacteria have been successfully used as vaccines against bacterial meningitis and sepsis among others and the composition of the vesicles can easily be engineered. OMVs can be used as a vaccine platform by engineering heterologous antigens to the vesicles. The major advantages of adding heterologous proteins to the OMV are that the antigens retain their native conformation, the ability of targeting specific immune responses, and a single production process suffices for many vaccines. Several promising vaccine platform concepts have been engineered based on decorating OMVs with heterologous antigens. This review discusses these vaccine concepts and reviews design considerations as the antigen location, the adjuvant function, physiochemical properties, and the immune response.  相似文献   

6.
Anaplasma marginale is an important vector-borne rickettsia of ruminants in tropical and subtropical regions of the world. Immunization with purified outer membranes of this organism induces protection against acute anaplasmosis. Previous studies, with proteomic and genomic approach identified 21 proteins within the outer membrane immunogen in addition to previously characterized major surface protein1a-5 (MSP1a-5). Among the newly described proteins were VirB9, VirB10, and elongation factor-Tu (EF-Tu). VirB9, VirB10 are considered part of the type IV secretion system (TFSS), which mediates secretion or cell-to-cell transfer of macromolecules, proteins, or DNA-protein complexes in Gram-negative bacteria. EF-Tu can be located in the bacterial surface, mediating bacterial attachment to host cells, or in the bacterial cytoplasm for protein synthesis. However, the roles of VirB9, VirB10, and TFSS in A. marginale have not been defined. VirB9, VirB10, and EF-Tu have not been explored as vaccine antigens. In this study, we demonstrate that sera of cattle infected with A. marginale, with homologous or heterologous isolates recognize recombinant VirB9, VirB10, and EF-Tu. IgG2 from naturally infected cattle also reacts with these proteins. Recognition of epitopes by total IgG and by IgG2 from infected cattle with A. marginale support the inclusion of these proteins in recombinant vaccines against this rickettsia.  相似文献   

7.
Secretion of haemolysin (HlyA) is secA independent, but depends upon two accessory membrane proteins, HlyB and HlyD, encoded by the hly determinant. A fourth (cytoplasmic) protein, HlyC, is required to activate HlyA post-translationally, but has no role in export. Deletion studies have previously shown that the HlyA molecule contains a targeting signal close to the C-terminus which specifically directs its secretion to the medium. This targeting signal has been variously located within the terminal 27, 53, 60 or 113 amino acids. In this paper, we have sought to confirm the presence of a C-terminal targeting signal and to analyse the specificity of the Hly transport system through fusion of C-terminal fragments of HlyA to heterologous polypeptides. A C-terminal fragment (23 kDa) of HlyA, when fused at the C-terminus, efficiently promoted the secretion of the eukaryotic protein prochymosin (PCM) to the medium via HlyB and HlyD. This result is in contrast to previous findings that prochymosin, preceded by the alkaline phosphatase signal sequence, cannot be translocated across the Escherichia coli inner membrane. The HlyA targeting domain was also used to secrete to the medium varying portions of chloramphenicol acetyltransferase (CAT) and 98 per cent of the beta-galactosidase (LacZ) molecule (both E. coli cytoplasmic proteins). In the case of the PCM and CAT fusions the efficiency of secretion was reduced as the proportion of the PCM and CAT molecule increased. This result is consistent with inhibition of secretion through the irreversible folding of the larger passenger protein fragments, or the occlusion of the HlyA targeting signal by upstream sequences. Analysis of the nature of the C-terminal domain promoting secretion of prochymosin, demonstrated that shortening the signal domain from 218 to 113 amino acids significantly reduced the efficiency of secretion. This result may also reflect the importance of maintaining an independently folded signal motif well separated from a passenger domain.  相似文献   

8.
Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri-plasma and internal lumen of the ghosts can be fully utilized. This extended recombinant ghost system represents a new strategy for adjuvant free combination vaccines.  相似文献   

9.
Type I and II secretory pathways are used for the translocation of recombinant proteins from the cytoplasm of Escherichia coli. The purpose of this study was to evaluate four signal peptides (HlyA, TorA, GeneIII, and PelB), representing the most common secretion pathways in E. coli, for their ability to target green fluorescent protein (GFP) for membrane translocation. Signal peptide-GFP genetic fusions were designed in accordance with BioFusion standards (BBF RFC 10, BBF RFC 23). The HlyA signal peptide targeted GFP for secretion to the extracellular media via the type I secretory pathway, whereas TAT-dependent signal peptide TorA and Sec-dependent signal peptide GeneIII exported GFP to the periplasm. The PelB signal peptide was inefficient in translocating GFP. The use of biological technical standards simplified the design and construction of functional signal peptide-recombinant protein genetic devices for type I and II secretion in E. coli. The utility of the standardized parts model is further illustrated as constructed biological parts are available for direct application to other studies on recombinant protein translocation.  相似文献   

10.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5′ end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

11.
The 1706-residue adenylate cyclase toxin (CyaA) of Bordetella pertussis is an RTX protein with extensive carboxy-proximai glycine and aspartate-rich repeats. CyaA does not have a cleavable amino-terminal signal peptide and can be secreted across both bacterial membranes of the Escherichia coli cell envelope by the α-haemolysin (HlyA) translocator (HlyBD/TolC). We performed deletion mapping of secretion signals recognized in CyaA by this heterologous translocator. Truncated proteins with N–terminal and internal deletions were secreted at levels up to 10 times higher than intact CyaA and similar to HlyA. A secretion signal recognized by HlyBD/ToiC was found within the last 74 residues of CyaA. However, secretion of CyaA was reduced but not abolished upon deletion of the last 75 or 217 residues, indicating that at least two additional secretion signals recognized by HlyBD/TolC are within CyaA. One of them was localized to the repeat sequence between residues Asp-1587 to lle-1631. Interestingly, a conserved acidic' motif (Glu/Asp)-(X)11-Asp-(X)3/5-(Glu/Asp)-(X)14-Asp was found in the C-terminal sequences of HlyA, CyaA and the two secreted CyaA derivatives. We speculate that the presence and spacing of acidic residues may be an important feature of secretion signals recognized by the haemolysin translocator.  相似文献   

12.
Escherichia coli hemolysin (HlyA) is secreted by a specific export machinery which recognizes a topogenic secretion signal located at the C-terminal end of HlyA. This signal sequence has been variously defined as comprising from 27 to about 300 amino acids at the C-terminus of HlyA. We have used here a combined genetic and immunological approach to select for C-terminal HlyA peptides that are still secretion-component. A deletion library of HlyA mutant proteins was generated in vitro by successive degradation of hy1A from the 5 end with exonuclease III. Secretion competence was tested by immunoblotting of the supernatant of each clone with an antiserum raised against a C-terminal portion of hemolysin. It was found that the hemolysin secretion system has no apparent size limitation for HlyA proteins over a range from 1024 to 62 amino acids. The smallest autonomously secretable peptide isolated in this selection procedure consists of the C-terminal 62 amino acids of HlyA. This sequence is shared by all secretion-competent, truncated HlyA proteins, which suggests that secretion of the E.coli hemolysin is strictly post-translational. The capacity of the hemolysin secretion machinery was found to be unsaturated by the steady-state level of its natural HlyA substrate and large amounts of truncated HlyA derivatives could still be secreted in addition to full-length HlyA.  相似文献   

13.
Live attenuated vaccines have been successfully used for the prevention of a number of viral and bacterial diseases. Several vaccine strains have been utilized recently as expression vectors for cloned heterologous antigens. Through the use of recombinant DNA technology, candidate vaccine strains and vector systems have been developed and are undergoing clinical evaluation.  相似文献   

14.
Live attenuated bacteria can be used as a carrier for the delivery of foreign antigens to a host's immune system. The N-terminal domain of SipB, a translocon protein of the type III secretion system of Salmonella enterica serovar Typhimurium, is required for secretion and outer membrane localization. In the present study, vaccine plasmids for antigen delivery in which the non-toxic tetanus toxin fragment C (TTFC), which contains a T cell epitope, is fused to the N-terminal 160 amino acids of SipB were developed. It was found that the recombinant proteins are secreted into the culture media and localized to the bacterial surface. TTFC-specific antibody responses are significantly increased in mice orally immunized with attenuated S. Typhimurium BRD509 strains carrying TTFC delivery plasmids. When the TTFC delivery cassettes were introduced into a low copy vector, the plasmid was stably maintained in the BRD509 strain and induced an immune response to the TTFC antigen in mice. These results suggest that expression and delivery of heterologous antigens fused to the N-terminus of SipB enhance the induction of antigen-specific immune responses, and that the N-terminal domain of SipB can be used as a versatile delivery system for foreign antigens.  相似文献   

15.
Pseudomonas aeruginosa releases several extracellular proteins which are secreted via two independent secretion pathways. Alkaline protease (AprA) is released by its own specific secretion machinery which is an ABC-transporter. Despite sequence similarities between components of ABC-transporters in different bacteria, each transporter is dedicated to the secretion of a particular protein or a family of closely related proteins. Heterologous complementation between ABC-transporters for unrelated polypeptides can occur, but only at a very low level. We show that the 50 C-terminal amino acids of AprA constitute an autonomous secretion signal. By heterologous complementation experiments between the unrelated a-haemolysin (HlyA) and Apr secretion systems we demonstrated that it is only the recognition of the secretion signal by the trans-locator which confers specificity to the secretion process. Secretion was size-dependent. However inclusion of glycine-rich repeats from HlyA in AprA seems to overcome the size limitation exerted by the Apr secretion apparatus such that the machinery secreted a hybrid protein 20kDa larger than the normal maximal size.  相似文献   

16.
Caulobacter crescentus is a gram-negative bacterium that produces a two-dimensional crystalline array on its surface composed of a single 98-kDa protein, RsaA. Secretion of RsaA to the cell surface relies on an uncleaved C-terminal secretion signal. In this report, we identify two genes encoding components of the RsaA secretion apparatus. These components are part of a type I secretion system involving an ABC transporter protein. These genes, lying immediately 3′ of rsaA, were found by screening a Tn5 transposon library for the loss of RsaA transport and characterizing the transposon-interrupted genes. The two proteins presumably encoded by these genes were found to have significant sequence similarity to ABC transporter and membrane fusion proteins of other type I secretion systems. The greatest sequence similarity was found to the alkaline protease (AprA) transport system of Pseudomonas aeruginosa and the metalloprotease (PrtB) transport system of Erwinia chrysanthemi. The prtB and aprA genes were introduced into C. crescentus, and their products were secreted by the RsaA transport system. Further, defects in the S-layer protein transport system led to the loss of this heterologous secretion. This is the first report of an S-layer protein secreted by a type I secretion apparatus. Unlike other type I secretion systems, the RsaA transport system secretes large amounts of its substrate protein (it is estimated that RsaA accounts for 10 to 12% of the total cell protein). Such levels are expected for bacterial S-layer proteins but are higher than for any other known type I secretion system.  相似文献   

17.
细菌样颗粒(Bacterium-like particles,BLPs)是一种新型非遗传修饰型乳酸菌表面展示技术,外源蛋白可通过锚钩蛋白锚定于经热酸处理而得的乳酸菌肽聚糖骨架表面,形成空心表面展示颗粒。因其安全性高、表面展示密度大、黏膜递送效率高,又兼有佐剂效应,BLPs广泛应用于黏膜疫苗和黏膜佐剂的开发、病毒抗原的纯化、生物催化剂的制备等领域。本文就BLPs的构建、独特优势、目前的应用及尚需解决的问题等方面进行详细综述,以期展现BLPs新型表面展示平台的广阔应用前景。  相似文献   

18.
Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as live vehicles for the production and delivery of heterologous proteins of vaccinal, medical or technological interest has therefore been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium). A promising application of L. lactis is its use as an antigen delivery vehicle, for the development of live mucosal vaccines. The expression of heterologous proteins and antigens as well as the various delivery systems developed in L. lactis, and its use as an oral vaccine carrier are discussed.  相似文献   

19.
We describe a new procedure allowing the generation and detection of immunogenic antigens from Helicobacter pylori via the hemolysin secretion apparatus of Escherichia coli. The gene (or gene fragment) encoding the H. pylori protein (or protein domain) is inserted in-frame into a residual portion of the hemolysin gene (hlyA), encoding the HlyA secretion signal (HlyA(s)). These fusion proteins are secreted efficiently by E. coli. This new approach allows the identification of immunodominant antigens by using sera derived from H. pylori-infected patients suffering from different gastroduodenal pathologies. Three immunodominant antigens bearing the ureB (urease B-subunit), flaA (flagellin A-subunit), and an unknown ORF (HP0888) encoding an E. coli FecE analogous protein fused to hlyA(s) were identified and characterized.  相似文献   

20.
The HlyA secretion signal sequence of approximately 46 residues is predicted to contain helix I and an amphipathic helix II separated by a short loop including the conserved Phe residue, F-989. All nine substitutions of Phe-989 drastically reduce secretion of HlyA. Directed mutagenesis identified a functional hot spot, EISK, in helix II. However, genetic analysis did not provide strong support for a functional helix II; rather, the results emphasized that individual residues, for example, E-978 and F-989, are essential irrespective of a specific secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号