首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the C-C chemokines RANTES (regulation upon activation normal T-cell expressed and secreted) and MCP-3 (monocyte chemotactic protein 3) on human immunodeficiency virus (HIV) replication in normal human peripheral blood mononuclear cells (PBMC) activated in vitro with phytohemagglutinin (PHA) were investigated. The following T-cell line-tropic (T-tropic) HIV strains were tested: HIV type 1 (HIV-1) SF-2, HIV-1 IIIB, HIV-1 MN, HIV-1 NDK, HIV-1 HE, HIV-1 NL4-3, HIV-2 ROD, and HIV-2 EHO. The strain most sensitive to the antiviral effects of RANTES and MCP-3 appeared to be HIV-1 SF-2. A 50% inhibitory concentration for HIV-1 SF-2 of 4 ng of RANTES per ml was obtained, and that of MCP-3 was about 1 ng/ml. However, MCP-3 was inactive at 100 ng/ml. Other HIV-1 strains, such as MN and HE, were less sensitive to the antiviral effects of RANTES and MCP-3, whereas all the other HIV strains tested were insensitive. Although the ratio of CD3+ CD4+ to CD3+ CD8+ T cells was the same in HIV-infected PBMC cultures treated or untreated with the chemokines, RANTES and MCP-3 interfered with the binding of monoclonal antibody (MAb) OKT4 to the CD4 receptor on T cells but not with the binding of MAb OKT4A. Therefore, RANTES and MCP-3 not only interfere with the HIV-induced fusion process but also have some modulating effect on the CD4 cell receptor. The chemokines did not affect HIV-1 binding to PHA-stimulated PBMC. Taken together, our observations point to the important role that both RANTES and MCP-3 may play in inhibiting HIV-1 replication of certain T-tropic strains in primary PBMC cultures. This may have important implications for immunotherapeutic strategies designed to slow down disease progression in AIDS.  相似文献   

2.
Boritz E  Palmer BE  Wilson CC 《Journal of virology》2004,78(22):12638-12646
Diminished in vitro proliferation of human immunodeficiency virus type 1 (HIV-1)-specific CD4+T cells has been associated with HIV-1 viremia and declining CD4+ T-cell counts during chronic infection. To better understand this phenomenon, we examined whether HIV-1 Gag p24 antigen-induced CD4+ T-cell proliferation might recover in vitro in a group of subjects with chronic HIV-1 viremia and no history of antiretroviral therapy (ART). We found that depletion of CD8+ cells from peripheral blood mononuclear cells (PBMC) before antigen stimulation was associated with a 6.5-fold increase in the median p24-induced CD4+ T-cell proliferative response and a 57% increase in the number of subjects with positive responses. These p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC were associated with expansion of the numbers of p24-specific, gamma interferon (IFN-gamma)-producing CD4+ T cells. Among the 20 viremic, treatment-naive subjects studied, the only 5 subjects lacking proliferation-competent, p24-specific CD4+ T-cell responses from CD8-depleted PBMC showed plasma HIV-1 RNA levels > 100,000 copies/ml. Furthermore, both the magnitude of p24-induced CD4+ T-cell proliferative responses from CD8-depleted PBMC and the frequency of p24-specific, IFN-gamma-producing CD4+ T cells expanded from CD8-depleted PBMC were associated inversely with plasma HIV-1 RNA levels. Therefore, proliferation-competent, HIV-1-specific CD4+ T cells that might help control HIV-1 disease may persist during chronic, progressive HIV-1 disease except at very high levels of in vivo HIV-1 replication.  相似文献   

3.
Host-virus interactions control disease progression in human immunodeficiency virus-infected human beings and in nonhuman primates infected with simian or simian/human immunodeficiency viruses (SHIV). These interactions evolve rapidly during acute infection and are key to the mechanisms of viral persistence and AIDS. SHIV(89.6PD) infection in rhesus macaques can deplete CD4(+) T cells from the peripheral blood, spleen, and lymph nodes within 2 weeks after exposure and is a model for virulent, acute infection. Lymphocytes isolated from blood and tissues during the interval of acute SHIV(89.6PD) infection have lost the capacity to proliferate in response to phytohemagglutinin (PHA). T-cell unresponsiveness to mitogen occurred within 1 week after mucosal inoculation yet prior to massive CD4(+) T-cell depletion and extensive virus dissemination. The lack of mitogen response was due to apoptosis in vitro, and increased activation marker expression on circulating T cells in vivo coincided with the appearance of PHA-induced apoptosis in vitro. Inappropriately high immune stimulation associated with rapid loss of mature CD4(+) T cells suggested that activation-induced cell death is a mechanism for helper T-cell depletion in the brief period before widespread virus dissemination. Elevated levels of lymphocyte activation likely enhance SHIV(89.6PD) replication, thus increasing the loss of CD4(+) T cells and diminishing the levels of virus-specific immunity that remain after acute infection. The level of surviving immunity may dictate the capacity to control virus replication and disease progression. We describe this level of immune competence as the host set point to show its pivotal role in AIDS pathogenesis.  相似文献   

4.
Fresh human immunodeficiency virus type 1 (HIV-1) isolates from patients with AIDS were screened for infectivity in chimpanzee peripheral blood mononuclear cells (PBMC) to identify strains potentially able to generate high virus loads in an inoculated animal. Only 3 of 23 isolates obtained were infectious in chimpanzee cells. Of these three, only one (HIV-1DH12) was able to initiate a productive infection in PBMC samples from all 25 chimpanzees tested. HIV-1DH12 tissue culture infections were characterized by extremely rapid replication kinetics, profound cytopathicity, and tropism for chimp and human PBMC, primary human macrophage, and several human T-cell lines. An infection was established within 1 week of inoculating a chimpanzee with 50 50% tissue culture infective doses of HIV-1DH12; cell-free virus was recovered from the plasma at weeks 1, 2, and 4 and was associated with the development of lymphadenopathy. Virus loads during the primary infection and at 6 months postinoculation were comparable to those reported in HIV-1-seropositive individuals.  相似文献   

5.
M Kubo  T Ohashi  M Fujii  S Oka  A Iwamoto  S Harada    M Kannagi 《Journal of virology》1997,71(10):7560-7566
CD8+ T lymphocytes of asymptomatic human immunodeficiency virus type 1 (HIV-1) carriers (AC) suppress HIV-1 replication in vitro. Failure of host defense mechanisms and increased virus proliferation are associated with disease progression. The exact mechanisms inducing these changes at the advanced stage of the disease are still obscure. In this study, we searched for experimental conditions favoring the abrogation of the suppression of viral replication in peripheral blood mononuclear cells (PBMC) of AC by using various pharmacological and biological probes modifying cell activation. Among such agents, staphylococcal enterotoxin B (SEB) and phorbol 12-myristate 13-acetate (PMA) markedly increased otherwise low levels of HIV-1 replication in cultures of phytohemagglutinin-stimulated AC PBMC following in vitro HIV-1 LAI infection. A similar but less pronounced virus induction was also observed in macrophage-tropic HIV-1. Individual pretreatment of CD4+ and CD8+ PBMC fractions with these agents caused a reduction in CD8+ cell proliferation and enhanced HIV-1 replication in CD4+ cells. SEB- and PMA-mediated augmentation of HIV-1 replication in AC PBMC was significantly blocked by neutralizing antibody to tumor necrosis factor-alpha (TNF-alpha), although recombinant TNF-alpha alone failed to reproduce the effects of SEB or PMA. Our results suggest that the induction of TNF-alpha may be one of the mechanisms that overcomes the CD8+-induced suppression of HIV-1 replication in AC and that it may induce HIV-1 replication.  相似文献   

6.
Adult rhesus macaques infected with nef-defective simian immunodeficiency virus (SIV) exhibit extremely low levels of steady-state virus replication, do not succumb to immunodeficiency disease, and are protected from experimental challenge with pathogenic isolates of SIV. Similarly, rare humans found to be infected with nef-defective human immunodeficiency virus type 1 (HIV-1) variants display exceptionally low viral burdens and do not show evidence of disease progression after many years of infection. HIV-1 Nef induces the rapid endocytosis and lysosomal degradation of cell surface CD4 and enhances virus infectivity in primary human T cells and macrophages. Although expression of SIV Nef also leads to down-modulation of cell surface CD4 levels, no evidence for SIV Nef-induced enhancement of virus infectivity was observed in earlier studies. Thus, it remains unclear whether fundamental differences exist between the activities of HIV-1 and SIV Nef. To establish more clearly whether the SIV and HIV-1 nef gene products are functionally analogous, we compared the replication kinetics and infectivity of variants of SIVmac239 that either do (SIVnef+) or do not (SIV delta nef) encode intact nef gene products. SIVnef+ replicates more rapidly than nef-defective viruses in both human and rhesus peripheral blood mononuclear cells (PBMCs). As previously described for HIV-1 Nef, SIV Nef also enhances virus infectivity within each cycle of virus replication. As a strategy for evaluating the in vivo contribution of HIV-1 nef alleles and long terminal repeat regulatory sequences to the pathogenesis of immunodeficiency disease, we constructed SIV-HIV chimeras in which the nef coding and U3 regulatory regions of SIVmac239 were replaced by the corresponding regions from HIV-1/R73 (SIVR7nef+). SIVR7nef+ displays enhanced infectivity and accelerated replication kinetics in primary human and rhesus PBMC infections compared to its nef-defective counterpart. Converse chimeras, containing SIV Nef in an HIV-1 background (R7SIVnef+) also exhibit greater infectivity than matched nef-defective viruses (R7SIV delta nef). These data indicate that SIV Nef, like that of HIV-1, does enhance virus replication in primary cells in tissue culture and that HIV-1 and SIV Nef are functionally interchangeable in the context of both HIV-1 and SIV.  相似文献   

7.
We constructed five chimeric clones between human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIVMAC) and four SIVMAC mutants by recombinant DNA techniques. Three chimeric clones and all mutants with an alteration in either the vif, vpx, vpr, or nef gene were infectious to human CD4-positive cell lines. The susceptibility of macaque monkey peripheral blood mononuclear cells (PBMC) to infection by these mutants and chimeras was examined in vitro. Macaque PBMC supported the replication of wild-type and vpx, vpr, and nef mutant SIVMAC strains. A chimera carrying the long terminal repeats (LTRs), gag, pol, vif, and vpx of SIVMAC and tat, rev, vpu, and env of HIV-1 was also replication competent in PBMC. In contrast, HIV-1, the vif mutant of SIVMAC, a chimera containing rev and env of SIVMAC, and a chimera containing vpx, vpr, tat, rev, and env of SIVMAC did not grow in PBMC. Western immunoblotting analysis of the replicating chimera in PBMC confirmed the hybrid nature of the virus. These data strongly suggested that the sequence important for macaque cell tropism lies within the LTR, gag, pol, and/or vif sequences of the SIVMAC genome.  相似文献   

8.
M W Cho  R Shibata    M A Martin 《Journal of virology》1996,70(10):7318-7321
We have recently reported the isolation and molecular cloning of a human immunodeficiency virus type 1 isolate (HIV-1 DH125) that exhibits rapid replication kinetics and marked cytopathicity in both human and chimpanzee peripheral blood mononuclear cells (PBMC). To identify the viral determinants responsible for infectivity of chimpanzee PBMC, chimeric viruses containing the following components were constructed: (i) the entire envelope gene; (ii) gp120 sequences; (iii) gp41 sequences; and (iv) individual or various combinations of the gp120 variable regions of HIV-1 DH125 inserted into the backbone of another HIV-1 isolate (HIV-1 AD8), which is unable to infect chimpanzee PBMC. Analyses of virus replication kinetics in human and chimpanzee PBMC revealed that gp120 contains determinants which confer infectivity for chimpanzee PBMC and that the capacity to establish such an infection requires the cooperative interaction between multiple variable regions of the HIV-1 DH125 gp120.  相似文献   

9.
Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef-) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef- replication in CD4(+)-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef- replication and facilitate enhanced wild-type replication in naive T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef- in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.  相似文献   

10.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

11.
12.
13.
Jurkat T-cell clones, stably expressing the human immunodeficiency virus type 1 (HIV-1) Vpr protein, exhibited an impaired susceptibility to HIV-1 infection. A marked down-modulation of surface CD4 receptors was detected in Vpr-expressing clones with respect to control cells. Likewise, a reduced CD4 expression was also observed in parental Jurkat cells infected with wild-type but not with Vpr-mutant HIV-1. Notably, Vpr-expressing clones were fully susceptible to infection with a vesicular stomatitis virus G protein-pseudotyped HIV-1 virus, indicating that a block at the level of viral entry was responsible for the inhibition of viral replication. The effect exerted by Vpr on HIV replication and CD4 expression suggests that this protein can regulate both the establishment of a productive HIV-1 infection and CD4-mediated T-cell functions.  相似文献   

14.
15.
Integrase function is required for retroviral replication in most instances. Although certain permissive T-cell lines support human immunodeficiency virus type 1 (HIV-1) replication in the absence of functional integrase, most cell lines and primary human cells are nonpermissive for integrase mutant growth. Since unintegrated retroviral DNA is lost from cells following cell division, we investigated whether incorporating a functional origin of DNA replication into integrase mutant HIV-1 might overcome the block to efficient gene expression and replication in nonpermissive T-cell lines and primary cells. Whereas the Epstein-Barr virus (EBV) origin (oriP) did little to augment expression from an integrase mutant reporter virus in EBV nuclear antigen 1-expressing cells, simian virus 40 (SV40) oriT dramatically enhanced integrase mutant infectivity in T-antigen (Tag)-expressing cells. Incorporating oriT into the nef position of a full-length, integrase-defective virus strain yielded efficient replication in Tag-expressing nonpermissive Jurkat T cells without reversion to an integration-competent genotype. Adding Tag to integrase mutant-oriT viruses yielded 11.3-kb SV40-HIV chimeras that replicated in Jurkat cells and primary monocyte-derived macrophages. Real-time quantitative PCR analyses of Jurkat cell infections revealed that amplified copies of unintegrated DNA likely contributed to SV40-HIV integrase mutant replication. SV40-based HIV-1 integrase mutant replication in otherwise nonpermissive cells suggests alternative approaches to standard integrase-mediated retroviral gene transfer strategies.  相似文献   

16.
We sought to determine the effects of different host cells on human immunodeficiency virus type 1 (HIV-1) infection in vitro. First, 17 primary viruses of various phenotypes were examined for replicative capacity in peripheral blood mononuclear cells (PBMC) from 10 healthy donors. While the range of infection was variable over a 40-fold range, it was substantially less than that previously reported (L. M. Williams and M. W. Cloyd, Virology 184:723-728, 1991). In particular, no donor cells demonstrated total resistance to HIV-1 infection. We next cocultured PBMC from an HIV-1-infected patient with stimulated PBMC from three healthy donors to determine the effect of host cells on selection for a particular HIV-1 quasispecies. By using DNA sequencing, it was found that the dominant quasispecies (AD30-15) after culture was nearly identical in the cells of different donors. Furthermore, after 6 months in vivo, the patient developed a dominant proviral population in PBMC that was most closely related to the quasispecies preferentially selected in vitro, although this quasispecies was only a minor fraction of the sequences present earlier in PBMC. In subsequent biological characterizations, it was found that AD30-15 grew much better in PBMC and macrophages than did other related quasispecies. Hence, we conclude that the primary mechanism of in vitro selection for a particular HIV-1 variant in this case is mediated by the phenotypic properties of the virus and is less dependent on host cell origin. The findings reported here have important practical implications for studies of HIV-1 replication in primary cells derived from healthy donors.  相似文献   

17.
Holm GH  Gabuzda D 《Journal of virology》2005,79(10):6299-6311
Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4(+) and CD8(+) T cells. Infection of primary T-cell cultures with ELI6 induced CD4(+) T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4(+) and CD8(+) T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4(+) T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8(+) T cells was triggered by a soluble factor(s) secreted by CD4(+) T cells. HIV-1 virions activated CD4(+) and CD8(+) T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25(+)HLA-DR(+) T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4(+) and CD8(+) T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.  相似文献   

18.
G-to-A hypermutation has been sporadically observed in human immunodeficiency virus type 1 (HIV-1) proviral sequences from patient peripheral blood mononuclear cells (PBMC) and virus cultures but has not been systematically evaluated. PCR primers matched to normal and hypermutated sequences were used in conjunction with an agarose gel electrophoresis system incorporating an AT-binding dye to visualize, separate, clone, and sequence hypermutated and normal sequences in the 297-bp HIV-1 protease gene amplified from patient PBMC. Among 53 patients, including individuals infected with subtypes A through D and at different clinical stages, at least 43% of patients harbored abundant hypermutated, along with normal, protease genes. In 70 hypermutated sequences, saturation of G residues in the GA or GG dinucleotide context ranged from 20 to 94%. Levels of other mutants were not elevated, and G-to-A replacement was entirely restricted to GA or GG, and not GC or GT, dinucleotides. Sixty-nine of 70 hypermutated and 3 of 149 normal sequences had in-frame stop codons. To investigate the conditions under which hypermutation occurs in cell cultures, purified CD4(+) T cells from normal donors were infected with cloned NL4-3 virus stocks at various times before and after phytohemagglutinin (PHA) activation. Hypermutation was pronounced when HIV-1 infection occurred simultaneously with, or a few hours after, PHA activation, but after 12 h or more after PHA activation, most HIV-1 sequences were normal. Hypermutated sequences generated in culture corresponded exactly in all parameters to those obtained from patient PBMC. Near-simultaneous activation and infection of CD4(+) T cells may represent a window of susceptibility where the informational content of HIV-1 sequences is lost due to hypermutation.  相似文献   

19.
Similar to human immunodeficiency virus type 1 (HIV-1) infection of humans, the natural history of HIV-2 infection in baboons (Papio cynocephalus) is a slow and chronic disease that generally takes several years before an AIDS-like condition develops. To shorten the amount of time to the development of disease, we performed five serial passages of HIV-2(UC2) in baboons by using blood and bone marrow samples during the acute phase of infection when viral loads were at high levels. After these serial passages, virus levels in plasma, peripheral blood mononuclear cells (PBMC) and lymphatic tissues in the acutely infected baboons were increased. Within 1 year of the HIV-2 infection, all of the inoculated baboons showed specific signs of AIDS-related disease progression within the lymphatic tissues, such as vascular proliferation and lymphoid depletion. The HIV-2(UC2) recovered after four serial passages showed increased kinetics of viral replication in baboon PBMC and cytopathicity. This study suggests that the HIV-2 isolate recovered after several serial passages in baboons will be useful in future studies of AIDS pathogenesis and vaccine development by using this animal model.  相似文献   

20.
Development of disease is extremely rare in chimpanzees when inoculated with either T-cell-line-adapted neutralization-sensitive or primary human immunodeficiency virus type 1 (HIV-1), at first excluding a role for HIV-1 neutralization sensitivity in the clinical course of infection. Interestingly, we observed that short-term in vivo and in vitro passage of primary HIV-1 isolates through chimpanzee peripheral blood mononuclear cells (PBMC) resulted in a neutralization-sensitive phenotype. Furthermore, an HIV-1 variant reisolated from a chimpanzee 10 years after experimental infection was still sensitive to neutralization by soluble CD4, the CD4 binding site recognizing antibody IgG1b12 and autologous chimpanzee serum samples, but had become relatively resistant to neutralization by polyclonal human sera and neutralizing monoclonal antibodies. The initial adaptation of HIV-1 to replicate in chimpanzee PBMC seemed to coincide with a selection for viruses with low replicative kinetics. Neither coreceptor usage nor the expression level of CD4, CCR5, or CXCR4 on chimpanzee PBMC compared to human cells could explain the phenotypic changes observed in these chimpanzee-passaged viruses. Our data suggest that the increased neutralization sensitivity of HIV-1 after replication in chimpanzee cells may in part contribute to the long-term asymptomatic HIV-1 infection in experimentally infected chimpanzees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号