首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
MicroRNAs (miRNAs) serve as gene silencers involved in essential cell functions. The role of miR-206 and E74-like factor 3 (Elf3) has been identified in osteoarthritis (OA), while the effect of exosomal miR-206 from bone marrow mesenchymal stem cells (BMSCs) in OA remains largely unknown. Thus, we aim to explore the role of exosomal miR-206 from BMSCs in OA with the involvement of Elf3. BMSCs and BMSC-derived exosomes (BMSC-exos) were obtained and identified. OA mouse models were constructed by anterior cruciate ligament transection and then treated with BMSC-exos or BMSC-exos containing miR-206 mimic/inhibitor. The expression of miR-206, Elf3, inflammatory factors, osteocalcin (OCN) and bone morphogenetic protein 2 (BMP2) in mouse femoral tissues was assessed. The pathological changes in mouse femur tissues were observed. The mouse osteoblasts were identified and treated with untransfected or transfected BMSC-exos, and then, the expression of miR-206, Elf3, OCN and BMP2 was determined. The alkaline phosphatase (ALP) activity, calcium deposition level, OCN secretion, proliferation, apoptosis and cell cycle arrest in osteoblasts were measured. MiR-206 was down-regulated while Elf3 was up-regulated in OA animal and cellular models. Exosomal miR-206 ameliorated inflammation and increased expression of OCN and BMP2 in mouse femoral tissues. Moreover, exosomal miR-206 promoted ALP activity, calcium deposition level, OCN secretion and proliferation and inhibited apoptosis in OA osteoblasts. Overexpressed Elf3 reversed miR-206 up-regulation-induced effects on OA osteoblasts. BMSC-derived exosomal miR-206 promotes proliferation and differentiation of osteoblasts in OA by reducing Elf3. Our research may provide novel targets for OA treatment.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is a leading cause of death due to tis high morbidity and mortality. microRNAs have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. In this study, we aimed to investigate the expression of microRNA-206 (miR-206) in lung tissues from COPD patients and to explore the regulatory role of miR-206 in the human pulmonary microvascular endothelial cells (HPMECs). Our results showed that cigarette smoke extract (CSE) promoted cell apoptosis, increased caspase-3 activity, and upregulated the expression of miR-206 in HPMECs, which was significantly reversed by the miR-206 knockdown. Transfection with miR-206 mimics led to cell apoptosis and was closely related to changes in the protein expression levels of caspase-3, caspase-9, and Bcl-2 in HPMECs. Further bioinformatics prediction analysis revealed that the 3′-untranslated region (3′UTR) of Notch3 and vascular endothelial growth factor-A (VEGFA) harbored miR-206-binding sites, and overexpression of miR-206 repressed the luciferase activity of the vectors containing Notch3 and VEGFA 3′UTR. Overexpression of either Notch3 or VEGFA attenuated miR-206-induced cell apoptosis in HPMECs. More importantly, miR-206 expression was upregulated in the lung tissues from COPD patients and was positively corrected with forced expiratory volume 1% predicted in COPD patients, while Notch3 and VEGFA mRNA levels were downregulated and were negatively correlated with the expression level of miR-206 in the lung tissues from COPD patients. In conclusion, our results showed that miR-206 was upregulated in COPD patients and CSE-treated HPMECs, promoted cell apoptosis via directly targeting Notch3 and VEGFA in HPMECs.  相似文献   

3.
Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant subtype of cholangiocarcinoma (CCA) with poor prognosis. In iCCA, the interplay between the stroma and tumor cells results in resistance to adjuvant chemotherapy. Increasing evidence indicates that miR-206 participates in tumor progression, but its role in iCCA is still unclear. The aim of this study was to identify dysregulated miR-206 expression in iCCA and to further explore the underlying mechanism.Methods: MiR-206 expression was proven to be downregulated in iCCA tissues by qPCR, and its correlation with clinical characteristics and prognosis was investigated. iCCA-derived cancer-associated fibroblast cells (CAFs) and normal fibroblast cells (NFs) were isolated and identified. MiR-206 was knocked in or down in CAFs and CCA cells, respectively, to explore the role of miR-206, and coculture of these treated CCAs and CAFs was conducted to explore the effects of miR-206 on their mutual promoting effects. Exosomes carrying miR-206 and an orthotopic mouse model were used to determine the inhibitory effects of miR-206 on iCCA deterioration in vivo.Results: We confirmed that miR-206 is a suppressor of iCCA. Overexpressing miR-206 in CCA cells inhibited cell proliferation, migration and invasion. When cocultured with CCA cells, NFs downregulated miR-206 expression, and NFs were susceptible to transforming into CAFs. Moreover, CAFs promoted CCA cell malignant behaviors and gemcitabine resistance. Overexpressing miR-206 in CAFs or CCA cells inhibited this mutual promoting effect. Additionally, when delivered by exosomes, miR-206 suppressed tumor deterioration. And combined with gemcitabine, this treatment resulted in a longer survival time.Conclusion: Our study explained that the interaction between CCA cells and CAFs promoted iCCA deterioration. As a suppressive factor, miR-206 inhibited aggressive characteristics and gemcitabine resistance by interfering with this mutual promoting effect. This research elucidated the molecular mechanism underlying the unfavorable chemotherapeutic response of patients with iCCA, which provided a promising target for iCCA treatment.  相似文献   

4.
Pulmonary Arterial Hypertension (PAH) is a progressive devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. MicroRNA-206 (miR-206) is known to regulate proliferation and is implicated in various types of cancers. However, the role of miR-206 in PAH has not been studied. In this study, it is hypothesized that miR-206 could play a role in the proliferation of PASMCs. In the present study, the expression patterns of miR-206 were investigated in normal and hypertensive mouse PASMCs. The effects of miR-206 in modulating cell proliferation, apoptosis and smooth muscle cell markers in human pulmonary artery smooth muscle cells (hPASMCs) were investigated in vitro. miR-206 expression in mouse PASMCs was correlated with an increase in right ventricular systolic pressure. Reduction of miR-206 levels in hPASMCs causes increased proliferation and reduced apoptosis and these effects were reversed by the overexpression of miR-206. miR-206 over expression also increased the levels of smooth muscle cell differentiation markers α-smooth muscle actin and calponin implicating its importance in the differentiation of SMCs. miR-206 overexpression down regulated Notch-3 expression, which is key a factor in PAH development. These results suggest that miR-206 is a potential regulator of proliferation, apoptosis and differentiation of PASMCs, and that it could be used as a novel treatment strategy in PAH.  相似文献   

5.
MicroRNAs(miRNAs)是一类约20~25nt的小分子核苷酸,在细胞内的多种生物学过程,如细胞增殖、凋亡、生长、分化和代谢等过程中具有重要的功能。已知miR-27在脂肪细胞和肌肉细胞的发育过程中起了重要作用,其在神经细胞中的表达调节至今仍不清楚。在本研究中,通过miRBase和TargetScan数据库分析了miR-27的靶基因,构建了miR-27的真核表达载体,改造了萤火虫荧光素酶和海肾荧光素酶报告载体,将miR-27的靶基因Bmi1的3′-UTR融合到报告载体中,转染神经胶质瘤细胞,利用双荧光素酶检测系统分析荧光素酶的活性。研究发现miR-27a和miR-27b共同的靶基因主要调节发育过程。MiR-27真核表达载体能产生成熟态的miR-27。MiR-27a、miR-27b或miR-27a和miR-27b联合与Bmi1的3′-UTR的正义序列共转染U343细胞能明显降低萤火虫荧光素酶的活性(分别P0.05,P0.05,P0.01),这提示了Bmi1可能为miR-27的靶基因。  相似文献   

6.
The expression of three microRNAs, miR-1, miR-206 and miR-133 is restricted to skeletal myoblasts and cardiac tissue during embryo development and muscle cell differentiation, which suggests a regulation by muscle regulatory factors (MRFs). Here we show that inhibition of C2C12 muscle cell differentiation by FGFs, which interferes with the activity of MRFs, suppressed the expression of miR-1, miR-206 and miR-133. To further investigate the role of myogenic regulators (MRFs), Myf5, MyoD, Myogenin and MRF4 in the regulation of muscle specific microRNAs we performed gain and loss-of-function experiments in vivo, in chicken and mouse embryos. We found that directed expression of MRFs in the neural tube of chicken embryos induced ectopic expression of miR-1 and miR-206. Conversely, the lack of Myf5 but not of MyoD resulted in a loss of miR-1 and miR-206 expression. Taken together our results demonstrate differential requirements of distinct MRFs for the induction of microRNA gene expression during skeletal myogenesis.  相似文献   

7.
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.  相似文献   

8.
The present study investigated the potential interaction between miR-526b and lncRNA SLC16A1-AS1 in triple-negative breast cancer (TNBC). Expression of miR-526b and SLC16A1-AS1 in TNBC tumor tissues and paired nontumor tissues from 60 TNBC patients was detected by real-time polymerase chain reaction (RT-qPCR). The interaction between miR-526b and SLC16A1-AS1 was evaluated with overexpression experiments, followed by RT-qPCR. The proliferation and migration of cells were detected with cell counting kit-8 assay and Transwell assay, respectively. Apoptosis of cells was assessed by cell apoptosis assay. The expression of apoptosis-related proteins was quantified by Western blot analysis. MiR-526b was predicted to bind with SLC16A1-AS1. Overexpression of miR-526b in TNBC cells decreased the expression levels of SLC16A1-AS1, while overexpression of SLC16A1-AS1 did not affect the expression of miR-526b. In TNBC tissues, miR-526b was downregulated in TNBC tissues, while SLC16A1-AS1 was upregulated in TNBC tissues compared to that in nontumor tissues. The expression of SLC16A1-AS1 and miR-526b were inversely correlated. In vitro experiments showed that overexpression of SLC16A1-AS1 promoted cell proliferation and invasion but suppressed cell apoptosis. MiR-526b played an opposite role and suppressed the function of SLC16A1-AS1. MiR-526b is downregulated in TNBC and it targets SLC16A1-AS1 to regulate proliferation, apoptosis, and invasion of TNBC cells.  相似文献   

9.
Oxidative stress-induced myocardial apoptosis and necrosis are involved in ischemia/reperfusion (I/R) injury. This study was performed to investigate microRNA (miR)-210’s role in oxidative stress-related myocardial damage. The expression of miR-210 was upregulated in myocardial tissues of I/R rats, while that of Bcl-2 adenovirus E1B 19kDa-interacting protein 3 (BNIP3) was downregulated. To simulate in vivo oxidative stress, H9c2 cells were treated with H2O2 for 48 h. MiR-210 level was increased upon H2O2 stimulation, peaked at 8 h, and then decreased. An opposite expression pattern of BNIP3 was observed. BNIP3 was demonstrated as a direct target of miR-210 via luciferase reporter assay. H2O2-induced cell apoptosis was attenuated by miR-210 mimics, whereas aggravated by miR-210 inhibitor. MiR-210 knockdown-induced cell apoptosis in presence of H2O2 was attenuated by BNIP3 siRNA. Our work demonstrates that miR-210 plays a protective role in H2O2-induced cardiomyocyte apoptosis at least by regulating the pro-apoptotic BNIP3.  相似文献   

10.
Background1,8-Cineole (1,8-CIN) is a monoterpene found in diverse dietary and medicinal herbs that has been reported to be effective against cardiovascular diseases.PurposeThe present research was designed to elucidate the treatment effects and the underlying mechanism of 1,8-CIN on heart failure (HF).MethodAn in vitro cardiac hypertrophy model and an in vivo heart failure (HF) model induced by isoprenaline (ISO) were established and treated with or without 1,8-CIN. In vitro miR-206-3p mimic or inhibitors were created. MiR-206-3p, SERP1 and related mRNAs or proteins were detected using qPCR or western blotting. Cell viability was tested by MTT assay, and apoptosis was measured using TUNEL assay, AO/EB assay and flow cytometry. Actin was stained with FITC-phalloidin. MiR-206-3p and related mRNAs or proteins in cardiac muscle tissues were measured using qPCR or western blotting, HE staining, Masson staining.ResultsISO subcutaneous injection increased cardiac hypertrophy, cytoplasmic vacuole formation, myofiber loss and fibrosis and decreased cardiomyocyte viability. 1,8-CIN treatment improved cardiomyocyte viability and reduced cardiac hypertrophy, cytoplasmic vacuole formation, myofibre loss and fibrosis. We found that 1,8-CIN attenuated apoptosis. We observed that expression of miR-206-3p was dramatically increased in ISO-exposed cardiomyocytes or ISO-treated rat hearts. MiR-206-3p was identified to target the 3’UTR of SERP1, resulting in the accumulation of un- or misfolded proteins, leading to endoplasmic reticulum (ER) stress.ConclusionThese results suggest that 1,8-CIN reduces the apoptosis induced by ER stress through inhibiting miR-206-3p, which inhibits the expression of SERP1.  相似文献   

11.
microRNA (miR) has been shown to be involved in the treatment of diseases such as osteoarthritis (OA). This study aims to investigate the role of miR-206 in regulating insulin-like growth factor-1 (IGF-1) in chondrocyte autophagy and apoptosis in an OA rat model via the phosphoinositide 3-kinase (P13K)/protein kinase B (AKT)-mechanistic target of rapamycin (mTOR) signaling pathway. Wistar rats were used to establish the OA rat model, followed by the observation of histopathological changes, Mankin score, and the detection of IGF-1-positive expression and tissue apoptosis. The underlying regulatory mechanisms of miR-206 were analyzed in concert with treatment by an miR-206 mimic, an miR-206 inhibitor, or small interfering RNA against IGF-1 in chondrocytes isolated from OA rats. Then, the expression of miR-206, IGF-1, and related factors in the signaling pathway, cell cycle, and apoptosis, as well as inflammatory factors, were determined. Subsequently, chondrocyte proliferation, cell cycle distribution, apoptosis, autophagy, and autolysosome were measured. OA articular cartilage tissue exhibited a higher Mankin score, promoted cell apoptotic rate, increased expression of IGF-1, Beclin1, light chain 3 (LC3), Unc-51-like autophagy activating kinase 1 (ULK1), autophagy-related 5 (Atg5), caspase-3, and Bax, yet exhibited decreased expression of miR-206, P13K, AKT, mTOR, and Bcl-2. Besides, miR-206 downregulated the expression of IGF-1 and activated the P13K/AKT signaling pathway. Moreover, miR-206 overexpression and IGF-1 silencing inhibited the interleukins levels (IL-6, IL-17, and IL-18), cell apoptotic rate, the formation of autolysosome, and cell autophagy while promoting the expression of IL-1β and cell proliferation. The findings from our study provide a basis for the efficient treatment of OA by investigating the inhibitory effects of miR-206 on autophagy and apoptosis of articular cartilage in OA via activating the IGF-1-mediated PI3K/AKT-mTOR signaling pathway.  相似文献   

12.
13.
Accumulation of amyloid-β peptide (Aβ) and massive neuronal death due to apoptosis were the essential steps in the pathogenesis of Alzheimer’s disease (AD). MiR-429 was reported to play an important role in the pathogenesis of AD. However, the detailed function and underlying molecular mechanism of miR-429 in the pathogenesis of AD remain elusive. Cortical neurons were stimulated with 20 µM of Aβ25?35 for 24 h to construct AD model in vitro. qRT-PCR assay was used to detect the expression of miR-429, and qRT-PCR or western blot analysis were performed to assess the levels of Sex-determining region Y-box 2 (SOX2) and B cell lymphoma-2 protein (BCL2) at mRNA or proteins levels in the AD mouse model and Aβ-induced treated cortical neurons. Luciferase reporter assay and western blot analysis were used to confirm the potential targets of miR-429. CCK-8 assay, flow cytometry analysis, and caspase3 activity assay were used to measure cell viability, cell apoptosis capacity and caspase3 activity, respectively. MiR-429 was upregulated and SOX2 and BCL2 were downregulated in the AD mouse model and Aβ-induced mouse cortical neurons. MiR-429 knockdown attenuated Aβ-induced cytotoxicity in mouse cortical neurons. SOX2 and BCL2 were direct targets of miR-429. Moreover, anti-miR-429-mediated neuroprotective effect was abated by the restoration of SOX2 or BCL2 expression. Knockdown of miR-429 might attenuate Aβ-induced cytotoxicity by targeting SOX2 and BCL2 in mouse cortical neurons, providing a novel prospect in AD therapy.  相似文献   

14.
15.
MicroRNAs function as an endogenous mode of fine gene regulation and have been implicated in multiple differentiation and developmental processes. In the present study, we investigated the role of miRNA-34 during chondrogenic differentiation of chick limb mesenchymal cells. We found that the expression of miR-34a increased upon chondrogenic inhibition. Blockade of miR-34a via PNA-based antisense oligonucleotides (ASOs) recovered the chondro-inhibitory actions of JNK inhibitor on migration of chondrogenic progenitors and the formation of precartilage condensation. Furthermore, we determined that EphA5 is a relevant target of miR-34a during chondrogenesis. MiR-34a was necessary and sufficient to down-regulate EphA5 expression, and up-modulation of EphA5 is sufficient to overcome inhibitory actions of miR-34 inhibition on cell migration and condensation of chick limb mesenchymal cells on collagen substrate. Taken together, our data suggest that miR-34a is a negative modulator of chondrogenesis, particularly in migration of chondroblasts, by targeting EphA5 and resulting inhibition of cellular condensation during chondrogenesis of chick limb mesenchymal cells.  相似文献   

16.
MicroRNAs (miRNA) are short RNA molecules regulating the expression of specific mRNAs. We investigated the expression pattern and potential targets of mouse miR-140 and found that miR-140 is specifically expressed in cartilage tissues of mouse embryos during both long and flat bone development. MiR-140 expression was detected in the limbs of E11.5 embryos in the primorida of future bones both in the fore and hindlimb and across autopod, zeugopod and stylopod. All digits of E14.5 fore- and hindlimbs showed accumulation of miR-140, except the first digit of the hindlimb. MiR-140 expression was also detected in the cartilagenous base of E17.5 skulls and in the sternum, the proximal rib heads and the developing vertebral column of E15.5 embryos. A potential target of miR-140, histone deacetylase 4, was validated experimentally and the possible role of miR-140 in long bone development is discussed.  相似文献   

17.
ABSTRACT

Effect of miR-216a-3p on lung cancer hasn’t been investigated. Here, we explored its effects on lung cancer. MiR-216a-3p expression in lung cancer tissues and cells was detected by RT-qPCR. The target gene of miR-216a-3p was predicted by bioinformatics and confirmed by luciferase-reporter assay. After transfection, cell viability, migration, invasion, proliferation, and apoptosis were detected by MTT, scratch, transwell, colony formation, and flow cytometry. The expressions of COPB2 and apoptosis-related factors were detected by RT-qPCR or western blot. MiR-216a-3p was low-expressed and COPB2 was high-expressed in lung cancer tissues and cells. MiR-216a-3p targeted COPB2 and regulated its expression. MiR-216a-3p inhibited lung cancer cell viability, migration, invasion, and proliferation, while promoted apoptosis. Effect of miR-216a-3p on lung cancer was reversed by COPB2. MiR-216a-3p regulated proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2.  相似文献   

18.

Background

MiR-155 has emerged as an “oncomiR”, which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.

Results

The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.

Conclusions

TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.  相似文献   

19.
Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号