首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dog hearts were prepared in situ so that heart rate (HR), left ventricular end diastolic pressure (LVEDP) and mean aortic pressure (MAP) could be controlled separately during computation of left ventricular dP/dt max and external stroke work (SW). Progressive increases in HR consistently raised dP/dt max over a wide range, and consistently lowered SW except at low rates. Progressive increases in LVEDP or MAP consistently raised both dP/dt max and SW. Infusion of noradrenaline consistently raided both dP/dt max and SW, except at very high HR when only dP/dt max was consistently raised. Our results lead us to question the validity of equating changes in pre-ejection measurements with changes in performance of the heart as a pump under abnormal conditions and in the assessment of inotropic agents.  相似文献   

2.
高血压大鼠心肌肥大及逆转过程中相关因素的探讨   总被引:4,自引:0,他引:4  
目的:探讨在心肌肥大及逆转过程中收缩压(SBP)、舒张压(DBP)、平均动脉压(MAP)、神经肽Y(NPY)等与左心室肥大的关系。方法:血压和心率用生物信号分析系统记录;NPY用放射免疫法测定,用SPSS软件求出了相关系数和回归方程。结果:SBP、DBP、MAP、心肌匀浆中NPY与心系数(LVW/BW)呈正相关,血液中NPY和心率(HR)与心系数不相关。结论:血压升高是导致左室肥大的因素之一,收缩压的影响大于舒张压;SBP、DBP、MAP、心肌匀浆中NPY与心系数(LVW/BW)有相关的趋势。  相似文献   

3.
This study investigated whether each part of the heart is evenly innervated by the left or right vagus and observed the mechanism of compensatory recovery after unilateral cervical vagotomy. HR, BP, LVSP and +/-dp/dt max all decreased one week after left vagotomy, whereas only BP and -dp/dt max decreased one week after right vagotomy. Western blot analyses revealed that the expression of M(2) receptors in the left atrium and left ventricle was upregulated after subacute (1 week) left/right vagotomy. However, significantly more cholinesterase-positive nerves in LV and RV were seen one week after unilateral vagotomy compared to the sham-operated group. In addition, baroreflex sensitivity was increased after subacute right vagotomy. The decreasing effects of ACh (0.5 microg/kg) on LVSP and +/-dp/dt max (but not on HR and BP) were facilitated by subacute unilateral vagotomy. Our present experiments indicate that 1) the working myocardium is innervated bilaterally by the vagus, 2) ventricular contractility is influenced more by denervation of the left than the right vagus and 3) up-regulation of M(2) muscarinic receptors in the left heart, increase of cholinergic nerves, and high baroreflex sensitivity could be involved in the mechanism of compensatory hemodynamic recovery via contralateral vagus overactivity, thereby amplifying contralateral vagal activity and decreasing cardiac contractility.  相似文献   

4.
心室的舒张性能和顺应性是心脏功能的两个重要方面。为了查明心肌梗塞后这两个特性的演变规律,我们在离体条件下观察了大鼠心脏舒张性能和顺应性在左冠状动脉结扎后2秒到21天之间的动态过程。实验表明,结扎冠状动脉后,左室舒张性能指标有明显改变(T值延长,-dp/dtmax降低),在恢复期未见明显改善;左室顺应性的变化有明显的时相性,表现为先有一过性增高,之后明显降低,继而回升到接近对照水平,到恢复期则明显增高。  相似文献   

5.
It has been well accepted that the bone and kidney are the principal organs of parathyroid hormone (PTH) actions, but there has been little work on the cardiovascular system. We evaluated the effect of PTH on the cardiovascular system of rats. In thiobutabarbital anesthetized rats, synthetic bovine parathyroid hormone, containing the amino acid (b-PTH 1-34) in dose of 0.1-10 micrograms/kg iv, caused dose related decrease in mean arterial blood pressure (MAP). On the other hand, there were significantly increase in heart rate (HR) and left ventricular contractile force. With the doses of 10 micrograms/kg, PTH decreased the MAP from 104.3 to 55.5 mmHg, left ventricular pressure (LVP) 122.1 to 96.4 mmHg, left ventricular end diastolic pressure (LVEDP) from 6.70 to 6.37 mmHg and LV dp/dt max 5,684 to 4,736 mmHg/sec. The HR, LV dp/dt/p and Vmax increase from 399.7 to 410.0 bpm, 95.5 to 108.4/sec, 98.2 to 107.4/sec, respectively. The propranolol, phentolamine, atropine and promethazine did not affect these actions of PTH. On the basis of these findings, we conclude that PTH has the directory vasodepressive action and the effect of augmentation of the left ventricular contractile force.  相似文献   

6.
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.  相似文献   

7.
Cardiovascular variability reflects autonomic regulation of blood pressure (BP) and heart rate (HR). However, systolic BP (SBP) variability also may be induced by fluctuations in stroke volume through left ventricular end-diastolic pressure (LVEDP) variability via dynamic ventricular-arterial coupling during respiration. We hypothesized that dynamic ventricular-arterial coupling is modulated by changes in left ventricular compliance associated with altered preload and that a cascade control mechanism of ventricular-arterial coupling with arterial-cardiac baroreflex function contributes to the genesis of cardiovascular variability at the respiratory frequency. Seven healthy young subjects underwent 6-min recordings of beat-by-beat LVEDP, SBP, and HR in the supine position with controlled respiration at 0.2 Hz during hyper- and hypovolemia. Spectral and transfer function analysis of these variables was conducted between 0.18 and 0.22 Hz. Dynamic ventricular-arterial coupling gain (Gain LVEDP-SBP) was smaller by 25% (P = 0.009) during hypervolemia than during hypovolemia, whereas arterial-cardiac baroreflex function gain (Gain SBP-HR) was similar. As predicted from a cascade model, a linear relationship between Gain LVEDP-HR and LVEDP-SBP times Gain SBP-HR was identified (R(2) = 0.93, P < 0.001). Gain LVEDP-HR was smaller by 40% (P = 0.04) during hypervolemia than during hypovolemia, leading to a reduction in spectral power of HR variability by 45% (P = 0.08). We conclude that dynamic ventricular-arterial coupling gain is reduced during hypervolemia because of a decrease in left ventricular compliance. A cascade model of ventricular-arterial coupling with the arterial-cardiac baroreflex contributes to the genesis of cardiovascular variability at the respiratory frequency.  相似文献   

8.
Hyperthyroidism has been reported to decrease heart antioxidant capacity and increase its susceptibility to in vitro oxidative stress. This may affect the heart response to ischemia-reperfusion, a condition that increases free radical production. We compared the functional recovery from in vitro ischemia-reperfusion (Langendorff) of hearts from euthyroid (E), hyperthyroid (H, ten daily intraperitoneal injections of T3, 10 microg/100g body weight), vitamin E-treated (VE, ten daily intramuscular injections, 20 mg/100g body weight) and hyperthyroid vitamin E-treated (HVE) rats. We also determined lipid peroxidation, tissue antioxidant capacity and the tissue capability to face an oxidative stress in vitro. A significant tachycardia was displayed during reperfusion following 20 min ischemia by the hyperthyroid hearts, together with a low recovery of left ventricular developed pressure (LVDP) and left ventricular dP/dt(max). When H hearts were paced at 300 beats/min, the functional recovery (LVDP and dP/dt(max)) was close to 100% and significantly higher than in E paced hearts. At the end of the ischemia-reperfusion protocol, myocardium antioxidant capacity was significantly lower, whereas lipid peroxidation and the susceptibility to in vitro oxidative stress were higher in the T3 treated (H) than in euthyroid rats. The in vitro tachycardic response, the reduction in the antioxidant capacity and the increase in lipid peroxidation were prevented by treatment of hyperthyroid rats with vitamin E (HVE). These results suggest that the tachycardic response to reperfusion following chronic T3 pretreatment was associated with the reduced capability of the heart to face oxidative stresses in hyperthyroidism.  相似文献   

9.
These experiments examined the independent effects of short-term exercise and heat stress on myocardial responses during in vivo ischemia-reperfusion (I/R). Female Sprague-Dawley rats (4 mo old) were randomly assigned to one of four experimental groups: 1) control, 2) 3 consecutive days of treadmill exercise [60 min/day at 60-70% maximal O2 uptake (VO2 max)], 3) 5 consecutive days of treadmill exercise (60 min/day at 60-70% VO2 max), and 4) whole body heat stress (15 min at 42 degrees C). Twenty-four hours after heat stress or exercise, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was maintained for 30-min followed by a 30-min period of reperfusion. Compared with control, both heat-stressed animals and exercised animals (3 and 5 days) maintained higher (P < 0.05) left ventricular developed pressure (LVDP), maximum rate of left ventricular pressure development (+dP/dt), and maximum rate of left ventricular pressure decline (-dP/dt) at all measurement periods during both ischemia and reperfusion. No differences existed between heat-stressed and exercise groups in LVDP, +dP/dt, and -dP/dt at any time during ischemia or reperfusion. Both heat stress and exercise resulted in an increase (P < 0.05) in the relative levels of left ventricular heat shock protein 72 (HSP72). Furthermore, exercise (3 and 5 days) increased (P < 0.05) myocardial glutathione levels and manganese superoxide dismutase activity. These data indicate that 3-5 consecutive days of exercise improves myocardial contractile performance during in vivo I/R and that this exercise-induced myocardial protection is associated with an increase in both myocardial HSP72 and cardiac antioxidant defenses.  相似文献   

10.
Compared with normal hearts, those with pathology (hypertrophy) are less tolerant of metabolic stresses such as ischemia. Pharmacologic intervention administered prior to such stress could provide significant protection. This study determined, firstly, whether the pentose sugar ribose, previously shown to improve postischemic recovery of energy stores and function, protects against ischemia when administered as a pretreatment. Secondly, the efficacy of this same pretreatment protocol was determined in hearts with pathology (hypertrophy). For study 1, Sprague-Dawley rats received equal volumes of either vehicle (bolus i.v. saline) or ribose (100 mg/kg) before global myocardial ischemia. In study 2, spontaneously hypertensive rats (SHR; blood pressure approximately 200/130) with myocardial hypertrophy underwent the same treatment protocol and assessments. In vivo left ventricular function was measured and myocardial metabolites and tolerance to ischemia were assessed. In normal hearts, ribose pretreatment significantly elevated the heart's energy stores (glycogen), and delayed the onset of irreversible ischemic injury by 25%. However, in vivo ventricular relaxation was reduced by 41% in the ribose group. In SHR, ribose pretreatment did not produce significant elevations in the heart's energy or improvements in tolerance to global ischemia, but significantly improved ventricular function (maximal rate of pressure rise (+dP/dt(max)), 25%; normalized contractility ((+dP/dt)/P), 13%) despite no change in hemodynamics. Thus, administration of ribose in advance of global myocardial ischemia does provide metabolic benefit in normal hearts. However, in hypertrophied hearts, ribose did not affect ischemic tolerance but improved ventricular function.  相似文献   

11.
哌替啶对心室肌收缩的抑制作用及其机制   总被引:6,自引:0,他引:6  
Zhang X  Cao CM  Wang LL  Ding YM  Xia Q 《生理学报》2003,55(2):197-200
为明确哌替啶对心脏收缩的直接效应 ,并探讨其相关机制。采用Langendorff灌流心脏模型 ,观察了哌替啶对大鼠心室收缩功能的影响 ,并用荧光测钙技术和膜片钳技术探讨了哌替啶作用的钙离子机制。结果显示 ,哌替啶剂量依赖性地降低离体灌流心脏的LVDP×HR、 +dP/dt和 -dP/dt,而升高LVEDP。在酶解分离的心室肌细胞上 ,哌替啶剂量依赖性地降低细胞收缩时的钙瞬变幅度 ,并升高舒张末期的钙水平。哌替啶不影响高浓度咖啡因诱导的内钙释放。哌替啶使L 型钙电流强度降低到给药前的 67 4± 10 1% ,而不改变钙通道的激活和失活电位。哌替啶减弱钙电流的作用并不能被阿片受体阻断剂纳洛酮所阻断。以上结果表明 ,哌替啶能通过非阿片受体介导的途径阻断细胞外钙离子的内流 ,对心室收缩产生直接的抑制作用  相似文献   

12.
We have previously shown that a permanent deficiency in the brain renin-angiotensin system (RAS) may increase the sensitivity of the baroreflex control of heart rate. In this study we aimed at studying the involvement of the brain RAS in the cardiac reactivity to the beta-adrenoceptor (beta-AR) agonist isoproterenol (Iso). Transgenic rats with low brain angiotensinogen (TGR) were used. In isolated hearts, Iso induced a significantly greater increase in left ventricular (LV) pressure and maximal contraction (+dP/dt(max)) in the TGR than in the Sprague-Dawley (SD) rats. LV hypertrophy induced by Iso treatment was significantly higher in TGR than in SD rats (in g LV wt/100 g body wt, 0.28 +/- 0.004 vs. 0.24 +/- 0.004, respectively). The greater LV hypertrophy in TGR rats was associated with more pronounced downregulation of beta-AR and upregulation of LV beta-AR kinase-1 mRNA levels compared with those in SD rats. The decrease in the heart rate (HR) induced by the beta-AR antagonist metoprolol in conscious rats was significantly attenuated in TGR compared with SD rats (-9.9 +/- 1.7% vs. -18.1 +/- 1.5%), whereas the effect of parasympathetic blockade by atropine on HR was similar in both strains. These results indicate that TGR are more sensitive to beta-AR agonist-induced cardiac inotropic response and hypertrophy, possibly due to chronically low sympathetic outflow directed to the heart.  相似文献   

13.
The aim of the present investigation was to characterize the baroreflex in weaned 23- to 25-day-old rats when maternal influences were no longer present. The relationship between mean arterial pressure (MAP) and heart rate (HR) was determined during baroreceptor loading with phenylephrine and baroreceptor unloading with sodium nitroprusside in conscious rats, first in the freely moving state and subsequently during acute stress. In unstressed rats, the slope of the relationship between MAP and HR was greater during baroreceptor loading than baroreceptor unloading. Acute stress significantly attenuated the slope of the response to baroreceptor loading but increased the slope of the response to baroreceptor unloading. Pretreatment with intracerebroventricular or intravenous losartan, an AT(1) receptor antagonist, or intracerebroventricular alpha-helical corticotropin-releasing hormone (alpha-hCRH), a receptor antagonist, before the stress significantly reduced the stress-induced attenuation of slope during baroreceptor loading. Hence, young postweaning rats can alter baroreflex function during acute stress in a manner that would favor increases in MAP. Even at this young age, a central action of ANG II and CRH contributes to these stress-induced adaptations.  相似文献   

14.
Today, cardiac contractility in mice is exclusively measured under anesthesia or in sedated animals because the catheters available are too rigid to be used in awake mice. We therefore developed a new catheter (Pebax 03) to measure cardiac contractility in conscious mice. In this study, we evaluated the accuracy and utility of this new catheter for assessment of cardiac contractility in anesthetized and conscious mice. With the use of a balloon-pop test, the Pebax catheter with an inner diameter of 0.3 mm was found to exhibit a high natural frequency, a low damping coefficient, and a flat frequency of up to 50.5 +/- 0.6 Hz. Under anesthesia (0.5% or 1.0% halothane), no difference was found in heart rate (HR), left ventricular (LV) systolic pressure (LVSP), the maximum rates of LV pressure rise and fall (LV dP/dt(max) and LV dP/dt(min), respectively), ejection time (ET), and isovolumic relaxation time constant (tau) when measured with either the 1.4-Fr Millar or Pebax 03 catheter. However, when HR, LVSP, LV dP/dt(max), and LV dP/dt(min) were recorded with the Pebax catheter in awake mice, values were significantly higher, and ET and tau were lower, than under anesthesia, suggesting a major impact of anesthesia on these parameters. The Pebax catheter was also used in a normotensive one-renin gene mouse model of cardiac hypertrophy induced by DOCA and salt. In this model, DOCA-salt induced a severe decrease in cardiac contractility in the absence of changes in blood pressure. These data demonstrate that cardiac contractility can be measured very accurately in conscious mice. This new device can be of great help in the investigation of cardiac function in normal and genetically engineered mice.  相似文献   

15.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

16.
The cardiovascular actions of centrally administered neuropeptide Y   总被引:1,自引:1,他引:0  
The cardiovascular actions of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) were examined in conscious, unrestrained rats. A prolonged decrease in heart rate (HR) and a fall in mean arterial pressure (MAP) were obtained following i.c.v. administration of NPY (1 and 10 micrograms). Passive immunization with an antiserum directed against NPY confirmed that the slowing of HR following i.c.v. administration of NPY was mediated via a central nervous mechanism and not from leakage of NPY out of the brain. Administration of NPY into different brain parenchymal regions identified a putative site of action in the rostral region of the solitary tract. The mechanism of the decrease in HR caused by centrally administered NPY was investigated by i.c.v. administration of NPY to animals that were pretreated with agents that altered autonomic tone. Administration of NPY to atropine-treated animals produced a reversal of the atropine-induced tachycardia, suggesting that the NPY-induced decrease in HR was not due to augmented vagal tone. However, administration of NPY to animals pretreated with propranolol did not significantly lower HR below that obtained with propranolol alone. These data suggest that i.c.v. administration of NPY may cause a decrease in cardiac sympathetic outflow. The effects of centrally administered NPY on baroreflex function were studied. The changes in HR caused by NPY did not significantly alter baroreflex set-point or gain. These studies provide evidence that NPY acted within a brainstem region to decrease sympathetic nervous outflow, resulting in a decrease in HR and MAP.  相似文献   

17.
Concomitant use of anabolic androgenic steroids and cocaine has increased in the last years. However, the effects of chronic exposure to these substances during adolescence on cardiovascular function are unknown. Here, we investigated the effects of treatment for 10 consecutive days with testosterone and cocaine alone or in combination on basal cardiovascular parameters, baroreflex activity, hemodynamic responses to vasoactive agents, and cardiac morphology in adolescent rats. Administration of testosterone alone increased arterial pressure, reduced heart rate (HR), and exacerbated the tachycardiac baroreflex response. Cocaine-treated animals showed resting bradycardia without changes in arterial pressure and baroreflex activity. Combined treatment with testosterone and cocaine did not affect baseline arterial pressure and HR, but reduced baroreflex-mediated tachycardia. None of the treatments affected arterial pressure response to either vasoconstrictor or vasodilator agents. Also, heart to body ratio and left and right ventricular wall thickness were not modified by drug treatments. However, histological analysis of left ventricular sections of animals subjected to treatment with testosterone and cocaine alone and combined showed a greater spacing between cardiac muscle fibers, dilated blood vessels, and fibrosis. These data show important cardiovascular changes following treatment with testosterone in adolescent rats. However, the results suggest that exposure to cocaine alone or combined with testosterone during adolescence minimally affect cardiovascular function.  相似文献   

18.
Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In na?ve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in na?ve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.  相似文献   

19.
目的:探讨共载体AAV-PR39-ADM分泌表达血管生成肽(PR39)与血管扩张肽(ADM)对SD大鼠心肌缺血再灌注损伤的作用。方法:选健康成年雄性SD大鼠36只,体重平均为280 g±20 g,随机分为假手术组(SO)、治疗组(TR)与对照组(I/R),每组各12只。治疗组大鼠心肌注射共载体AAV-PR39-ADM感染心肌7天后行B超检查,测量记录左室壁厚度及射血分数(EF%),左室收缩末压(LVSP),左室内压最大上升下降速率(±dp/dt max)评价作为心脏功能指标。对照组建立缺血再灌注损伤模型,假手术组只穿线不结扎且两组行相同检测。速取处死大鼠心肌行masson染色测量心肌梗死面积。结果:治疗组明显高于对照组,其射血分数、左室内收缩末压、最大上升速率,最大下降速率、梗死面积分别为:EF%(50.4±6.3),(29.8±10.5),P0.05;LVSP:(116±4.2),(101±3.7),P0.05;+dp/dt max:(2859±365),(2137±191),P0.05;-dp/dtmax:(2186±107),(1886±124),P0.05;IS%:(29.3±4.6),(24.6±2.2),P0.05。结论:共载体AAV-PR39-ADM能够显著恢复心肌缺血损伤引起的左室内压下降,提高心肌收缩能力,提高射血分数并明显缩小心肌梗死范围。  相似文献   

20.
Factors known to influence left ventricular contractility include preload, afterload, circulating catecholamine concentration, efferent sympathetic discharge, and heart rate. Heart rate influences have been primarily determined in the dog, whereas the influence of heart rate in smaller mammals has not been determined. Eight pentobarbital-anesthetized rabbits were instrumented to measure electrocardiogram, heart rate, left ventricular pressure, end-diastolic pressure, dP/dt, and mean and pulsatile aortic pressures. Systematic bradycardia was induced by stimulating the peripheral end of the sectioned right vagus nerve. Between 293 and 235 beats/min, there was no change in (dP/dt)max as heart rate was decreased. Below this range there was a direct relationship between (dP/dt)max and heart rate. Preload remained unchanged down to 132 beats/min. There was a small but significant decrease in afterload (0.09 mmHg X beat-1 X min-1; 1 mmHg = 133.32 Pa) throughout the decrease in heart rate. Infusion of propranolol (2.0 mg/kg) produced no marked change in the heart rate - (dP/dt)max relationship, although both resting heart rate and (dP/dt)max were reduced. This study demonstrates that (dP/dt)max is not influenced by changes in heart rate above 235 beats/min in the pentobarbital-anesthetized rabbit. These results differ from findings in other animals, and demonstrate that species and heart rate ranges must be considered when drawing conclusions regarding (dP/dt)max as a reliable index of contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号