首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatophore cells have been investigated as potential biodetectors for function-based detection of chemically and biologically toxic substances. Oncorhynchus tshawytscha (chinook salmon) melanophores, a chromatophore cell type containing brown pigment, rapidly detect the salmonid pathogens Aeromonas salmonicida, Yersinia ruckeri, and Flavobacterium psychrophilum and the human pathogen Bacillus cereus.  相似文献   

2.
The sensitivity of the leucocrit as a stress tolerance and fish health assessment method was evaluated by subjecting juvenile coho salmon, Oncorhynchus kisutch , or steelhead trout, Salmo gairdneri , to standardized crowding, handling, temperature and disease challenges. The leucocrit was a sensitive indicator of the physiological stress resulting from crowding at population densities of 0·2–0·4 kg l−1, and to the stress of handling and to temperature changes. It was relatively insensitive to physiological sampling procedures which supports its continued development as a stress assessment method.
In the case of fish diseases, subclinical or active Renibacterium salmoninarum and Yersinia ruckeri infections had essentially no effect on leucocrit values. In contrast, active Aeromonas salmonicida infections significantly depressed the leucocrit. However, no change was seen during the subclinical (incubation) phase prior to the development of an epizootic. Thus, the potential of the leucocrit as a fish health assessment method appears limited.  相似文献   

3.
Splenic antibody-producing cells were produced by rainbow trout that had been exposed to O-antigens extracted from Yersinia ruckeri and Aeromonas salmonicida by adding the concentrated antigen preparation directly into the water of the tank holding the fish for a flush exposure. This method was compared with the proven techniques of exposure: intraperitoneal injection or a 2 minute immersion of the fish in the antigen preparation. Dosage experiments showed that the production of antibody-producing cells was induced by the immersion of trout for 2 minutes in water with 5.0 μg/ml-1 (or more) with the Y. ruckeri O-antigen, or 500 μg ml-1 (or more) of the A. salmonicida O-antigen. Similar differences were evident when the respective antigens were added directly to the water.  相似文献   

4.
The effect of combination of trimethoprim with other non-sulphonamide antibacterial agents, in particular oxolinic acid and nalidixic acid, was evaluated against Gram-negative fish pathogens. The species included Aeromonas salmonicida, Yersinia ruckeri , some Vibrio spp. and Escherichia coli as a reference. The extent of synergy found by other workers with these substances against human Gram-negative bacteria was not apparent here. Some positive interaction between trimethoprim and oxolinic acid was found with Aer. salmonicida, Y. ruckeri and E. coli and between trimethoprim and nalidixic acid with Y. ruckeri in double disc diffusion tests but was not supported by fractional inhibitory concentration indices. The combinations were not effective in preventing emergence of resistance in passage on a drug gradient. Trimethoprim-resistant isolates of Aer. salmonicida were inhibited by low levels of oxolinic acid but the converse did not apply.  相似文献   

5.
A multiplex PCR assay based on the 16S rRNA genes was developed for the simultaneous detection of three major fish pathogens, Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri. The assay proved to be specific and as sensitive as each single PCR assay, with detection limits in the range of 6, 0.6, and 27 CFU for A. salmonicida, F. psychrophilum, and Y. ruckeri, respectively. The assay was useful for the detection of the bacteria in artificially infected fish as well as in fish farm outbreaks. Results revealed that this multiplex PCR system permits a specific, sensitive, reproducible, and rapid method for the routine laboratory diagnosis of infections produced by these three bacteria.  相似文献   

6.
Physiological, immunological and biochemical parameters of blood and mucus, as well as skin histology, were compared in 3 salmonid species (rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon O. kisutch) following experimental infection with sea lice Lepeophtheirus salmonis. The 3 salmonid species were cohabited in order to standardize initial infection conditions. Lice density was significantly reduced on coho salmon within 7 to 14 d, while lice persisted in higher numbers on rainbow trout and Atlantic salmon. Lice matured more slowly on coho salmon than on the other 2 species, and maturation was slightly slower on rainbow trout than on Atlantic salmon. Head kidney macrophages from infected Atlantic salmon had diminished respiratory burst and phagocytic capacity at 14 and 21 d post-infection (dpi), while infected rainbow trout macrophages had reduced respiratory burst and phagocytic capacities at 21 dpi, compared to controls. The slower development of lice, coupled with delayed suppression of immune parameters, suggests that rainbow trout are slightly more resistant to lice than Atlantic salmon. Infected rainbow trout and Atlantic salmon showed increases in mucus lysozyme activities at 1 dpi, which decreased over the rest of the study. Mucus lysozyme activities of infected rainbow trout, however, remained higher than controls over the entire period. Coho salmon lysozyme activities did not increase in infected fish until 21 dpi. Mucus alkaline phosphatase levels were also higher in infected Atlantic salmon compared to controls at 3 and 21 dpi. Low molecular weight (LMW) proteases increased in infected rainbow trout and Atlantic salmon between 14 and 21 dpi. Histological analysis of the outer epithelium revealed mucus cell hypertrophy in rainbow trout and Atlantic salmon following infection. Plasma cortisol, glucose, electrolyte and protein concentrations and hematocrit all remained within physiological limits for each species, with no differences occurring between infected and control fish. Our results demonstrate that significant differences in mucus biochemistry and numbers of L. salmonis occur between these species.  相似文献   

7.
Two Aeromonas salmonicida-specific polymerase chain reaction (PCR) tests and 1 A. salmonicida subsp. salmonicida-specific PCR test were used to screen salmonid populations that were either overtly or covertly infected with A. salmonicida subsp. salmonicida. It was demonstrated that these PCR assays could be used to replace the biochemical testing currently employed to confirm the identity of A. salmonicida isolates cultured from infected fish. The AP and PAAS PCR assays were also capable of direct detection of A. salmonicida in overtly infected fish, with mucus, gill and kidney samples most likely to yield a positive result. Culture was a more reliable method for the direct detection of A. salmonicida in covertly infected salmonids than was the direct PCR testing of tissue samples, with the AP and PAAS PCRs having a lower detection limit (LDL) of approximately 4 x 10(5) colony-forming units (CFU) g(-1) sample.  相似文献   

8.
The thermal stabilities of hybrid duplexes between the DNAs from three salmonid fish species were monitored as measures of DNA homology. The chum salmon, Oncorhynchus keta, and coho salmon, Oncorhynchus kisutch, had more DNA homology with each other than either had with the rainbow trout, Salmo gairdnerii. Morphological, ecological and protein similarities between the coho salmon and the rainbow trout may be due to parallel or convergent evolution.  相似文献   

9.
An oxidase-negative Aeromonas salmonicida was isolated from coho salmon (Oncorhynchus) kisutch) suffering from an epizootic of furunculosis at the state hatchery near Belfair, Washington. Typical, oxidase-positive A. salmonicida was isolated concurrently from the same population of fish. Mortality was controlled with medicated feed treatments. Evidence supporting the identification of the two types of A. salmonicida is presented. Methods for the proper identification of oxidase-negative A. salmonicida isolates are evaluated.  相似文献   

10.
Susceptibility to different diseases among related species, such as coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhyncus mykiss) and Atlantic salmon (Salmo salar), is variable. The prominence of these species in aquaculture warrants investigation into sources of this variability to assist future disease management. To develop a better understanding of the basis for species variability, several important non-specific humoral parameters were examined in juvenile fish of these three economically important species. Mucous protease, alkaline phosphatase and lysozyme, as well as plasma lysozyme activities and histological parameters (epidermal thickness and mucous cell density, and size) were characterized and compared for three salmonids: rainbow trout, Atlantic salmon and coho salmon. Rainbow trout had a thicker epidermis and significantly more mucous cells per cross-sectional area than the other two species. Rainbow trout also had significantly higher mucous protease activity than Atlantic salmon and significantly higher lysozyme (plasma and mucus) activities than coho and Atlantic salmon, in seawater. Atlantic salmon, on the other hand, had the lowest activities of mucous lysozyme and proteases, the thinnest epidermal layer and the sparsest distribution of mucous cells, compared with the two other salmonids in seawater. Only coho salmon had sacciform cells. Atlantic and coho salmon had higher mucous lysozyme activities in freshwater as compared to seawater. There was no significant difference between mucous lysozyme activities in any of the three species reared in freshwater; however, rainbow trout still had a significantly higher plasma lysozyme activity compared with the other two species. All three species exhibited significantly lower mucous alkaline phosphatase and protease activities in freshwater than in seawater. Our results demonstrate that there are significant histological and biochemical differences between the skin and mucus of these three salmonid species, which may change as a result of differing environments. Variation in these innate immune factors is likely to have differing influences on each species response to disease processes.  相似文献   

11.
Soluble, defense lectins bind conserved microbial patterns leading to pathogen opsonization, enhanced phagocytosis and activation of complement. These immune functions, however, vary widely among individuals due to genetic and acquired differences affecting binding capacity or plasma concentration. Most evidence for the defensive function of soluble lectins is based on mammals, but several functionally homologous, but less well-characterized, lectins have been identified in fish. In this study, we compared binding of rainbow trout plasma ladderlectin to relevant, intact bacterial targets. A polyclonal antiserum raised against a synthetic peptide identical to the 20 N-terminal amino acids of the reduced 16 kDa rainbow trout ladderlectin subunit was used to detect plasma ladderlectin in immunoblots and indirect enzyme-linked immunosorbent assay (ELISA). Ladderlectin binding to Aeromonas salmonicida subsp. salmonicida, Aeromonas hydrophila, Yersinia ruckeri and Pseudomonas sp. was detected by PAGE and immunoblots of saccharide elutions from intact bacteria incubated in the presence of normal trout plasma. Although plasma concentrations of immunoreactive ladderlectin were low in the majority of trout, significant (P < 0.0001) variation between individual fish was observed in two separate populations. In addition, one population demonstrated a subset of individuals whose ladderlectin levels were approximately seven-fold higher than the population median. These findings indicate that rainbow trout have variable amounts of plasma ladderlectin capable of binding to the surfaces of several relevant bacterial targets.  相似文献   

12.
Adult and mobile preadult sea lice Lepophtheirus salmonis were incubated with mucus samples from rainbow trout (Oncorhynchus mykiss), coho salmon (O. kisutch), Atlantic salmon (Salmo salar), and winter flounder (Pseudopleuronectes americanus) to determine the response of L. salmonis to fish skin mucus as assessed by the release of proteases and alkaline phosphatase. There was variation in the release of respective enzymes by sea lice in response to different fish. As well, sealice collected from British Columbia responded differently than New Brunswick sea lice to coho salmon mucus. Fish mucus and seawater samples were also analyzed using protease gel zymography to observe changes in the presence of low molecular weight (LMW) proteases after L. salmonis incubation. Significantly higher proportions of sea lice secreted multiple bands of L. salmonis-derived LMW proteases after incubation with rainbow trout or Atlantic salmon mucus in comparison with seawater, coho salmon, or winter flounder mucus. Susceptibility to L. salmonis infections may be related to the stimulation of LMW proteases from L. salmonis by fish mucus. The resistance of coho salmon to L. salmonis infection may be due to agents in their mucus that block the secretion of these LMW proteases or factors may exist in the mucus of susceptible species that stimulate their release.  相似文献   

13.
Carnobacterium maltaromaticum B26 and Carnobacterium divergens B33, which were isolated from the intestine of healthy rainbow trout (Oncorhynchus mykiss, Walbaum), were selected as being potentially useful as probiotics with effectiveness against Aeromonas salmonicida and Yersinia ruckeri. Thus, rainbow trout administered with feed supplemented with B26 or B33 dosed at >10(7) cells g(-1) feed conferred protection against challenge with virulent cultures of the pathogens. Moreover, both cultures persisted in the gut for up to 3 weeks after administration. The cultures enhanced the cellular and humoral immune responses. Specifically, fish fed with B26 demonstrated significantly increased phagocytic activity of the head kidney macrophages, whereas the use of B33 led to significant increases in respiratory burst and serum lysozyme activity. Also, the gut mucosal lysozyme activity for fish fed with both cultures was statistically higher than the controls.  相似文献   

14.
Bacterial monitoring and surveillance is critical for the early detection of pathogens to avoid the spread of disease. To facilitate this, an efficient, high-performance and high-throughput method to detect the presence of femotgram amounts of ribosomal RNA from 4 bacterial fish pathogens: Aeromonas salmonicida; Tenacibaculum maritimum (formerly Flexibacter maritimus); Lactococcus garvieae; and Yersinia ruckeri was developed. The system uses NucleoLink strips for liquid- and solid-phase PCR in 1 tube, to perform RT-PCR-enzyme hybridisation assays (RT-PCR-EHA) detecting 4 fg or less of rRNA from pure cultures and between 1 and 9 CFU per 200 microl sample volume from selective-enrichment culture media. The liquid-phase amplicons were visualised by gel electrophoresis and the solid-phase amplicons detected using internal probes and visualised using colorimetric detection and p-nitrophenylphosphate.  相似文献   

15.
The health status of rudd ( Scardinius erythrophthalmus hesperidicus H.) in Lake Vrana, the largest Croatian karstic lake, was evaluated. Studies comprising parasitological, haematological and bacteriological surveys were conducted over a 2-year period. Parasitological examination revealed a light infestation of 27% of the examined fish, mostly Dactylogyrus and Ichthyophthirius species. Haematological studies showed that haematocrit values were lower than the physiological limit. A haematocrit coefficient of correlation in all research periods was higher than 15%, indicating that the majority of fish in the study were susceptible to the development of bacterial and other diseases. Indeed, a diverse array of bacteria were isolated from rudd, mainly Flavobacterium spp. and Aeromonas spp., but also some specific fish pathogens, notably Pasteurella piscicida, Yersinia ruckeri , and Edwardsiella ictaluri , were identified. Under stress conditions, detected bacterial species can give rise to disease outbreaks.  相似文献   

16.
Numbers of splenic antibody-producing cells and humoral antibody titres were elevated during immunization regimes in rainbow trout when the bacterins Yersinia ruckeri or Aeromonas salmonicida O-antigen preparations were mixed with the immunostimulator FK-565. Fish sampled 14 days after injection showed a marked increase in the immune response when doses of 5, 10 or 100 μg of antigen were used. The immunostimulator may aid initial antigen uptake and processing.  相似文献   

17.
An ADP-ribosylating toxin named Aeromonas salmonicida exoenzyme T (AexT) in A. salmonicida subsp. salmonicida, the etiological agent of furunculosis in fish, was characterized. Gene aexT, encoding toxin AexT, was cloned and characterized by sequence analysis. AexT shows significant sequence similarity to the ExoS and ExoT exotoxins of Pseudomonas aeruginosa and to the YopE cytotoxin of different Yersinia species. The aexT gene was detected in all of the 12 A. salmonicida subsp. salmonicida strains tested but was absent from all other Aeromonas species. Recombinant AexT produced in Escherichia coli possesses enzymatic ADP-ribosyltransferase activity. Monospecific polyclonal antibodies directed against purified recombinant AexT detected the toxin produced by A. salmonicida subsp. salmonicida and cross-reacted with ExoS and ExoT of P. aeruginosa. AexT toxin could be detected in a wild type (wt) strain of A. salmonicida subsp. salmonicida freshly isolated from a fish with furunculosis; however, its expression required contact with RTG-2 rainbow trout gonad cells. Under these conditions, the AexT protein was found to be intracellular or tightly cell associated. No AexT was found when A. salmonicida subsp. salmonicida was incubated in cell culture medium in the absence of RTG-2 cells. Upon infection with wt A. salmonicida subsp. salmonicida, the fish gonad RTG-2 cells rapidly underwent significant morphological changes. These changes were demonstrated to constitute cell rounding, which accompanied induction of production of AexT and which led to cell lysis after extended incubation. An aexT mutant which was constructed from the wt strain with an insertionally inactivated aexT gene by allelic exchange had no toxic effect on RTG-2 cells and was devoid of AexT production. Hence AexT is directly involved in the toxicity of A. salmonicida subsp. salmonicida for RTG-2 fish cells.  相似文献   

18.
AIMS: To develop a nested PCR to detect Flavobacterium psychrophilum based on the intergenic spacer region 16S-23S rRNA and in 16S rRNA for analysis of brood stock salmonid fish samples. METHODS AND RESULTS: The sensitivity and specificity of the test was evaluated using pure cultures, spiked and naturally contaminated samples. Samples were internal organs (spleen and kidney), eggs and ovarian fluid from rainbow trout and coho salmon from European fish farms (France, Spain). This nested PCR was more specific and sensitive that the nested PCR based on 16S rRNA sequences primers only. The detection limit of this PCR assay was one bacterium per PCR tube corresponding to 10 bacteria/mg of spleen and 5 bacteria/ml from ovarian fluid. Analysis of mixed ovarian fluid samples from reproductive salmonids in various French hatcheries demonstrated that 69% of hatcheries were contaminated with Fl. psychrophilum. The analysis of individual samples demonstrated that 39% of rainbow trout (Oncorhynchus mykiss) and 62.5% of coho salmon (O. kisutch) samples were contaminated. CONCLUSIONS: The results demonstrated a very sensitive and specific detection of this fish pathogen and that most of the female rainbow trout and coho salmon breeders analysed carry Fl. psychrophilum in the ovarian fluid. SIGNIFICANCE AND IMPACT OF THE STUDY: The understanding of Fl. psychrophilum dissemination and transmission and the detection of asymptomatic carriers is important for the development of free breeders stock and for significantly decreasing Flavobacteriose.  相似文献   

19.
The present study aimed to investigate the potential probiotic properties of six lactic acid bacteria (LAB) intended for human use, Lactobacillus rhamnosus ATCC 53103, Lactobacillus casei Shirota, Lactobacillus bulgaricus, L. rhamnosus LC 705, Bifidobacterium lactis Bb12, and Lactobacillus johnsonii La1, and one for animal use, Enterococcus faecium Tehobak, for use as a fish probiotic. The strains for human use were specifically chosen since they are known to be safe for human use, which is of major importance because the fish are meant for human consumption. The selection was carried out by five different methods: mucosal adhesion, mucosal penetration, inhibition of pathogen growth and adhesion, and resistance to fish bile. The adhesion abilities of the seven LAB and three fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and Flavobacterium psychrophilum, were determined to mucus from five different sites on the surface or in the gut of rainbow trout. Five of the tested LAB strains showed considerable adhesion to different fish mucus types (14 to 26% of the added bacteria). Despite their adhesive character, the LAB strains were not able to inhibit the mucus binding of A. salmonicida. Coculture experiments showed significant inhibition of growth of A. salmonicida, which was mediated by competition for nutrients rather than secretion of inhibitory substances by the probiotic bacteria as measured in spent culture liquid. All LAB except L. casei Shirota showed tolerance against fish bile. L. rhamnosus ATCC 53103 and L. bulgaricus were found to penetrate fish mucus better than other probiotic bacteria. Based on bile resistance, mucus adhesion, mucus penetration, and suppression of fish pathogen growth, L. rhamnosus ATCC 53103 and L. bulgaricus can be considered for future in vivo challenge studies in fish as a novel and safe treatment in aquaculture.  相似文献   

20.
To obtain specific DNA probes for the identification of the fish pathogen, Renibacterium salmoninarum, a discriminatory recombinant DNA library was constructed using selective fragments of the bacterial genome. Three renibacterial clones, pMAM29, pMAM46 and pMAM77, containing 149, 73, and 154 bp respectively, were isolated and characterized. The specificity of the probes was confirmed by dot-blot and Southern hybridization analyses. Bacterial hybridization experiments revealed that pMAM29 discriminates the R. salmoninarum genome from that of other fish pathogens such as Aeromonas salmonicida, Yersinia ruckeri, Flexibacter columnaris, Lactobacillus piscicola, Vibrio ordalii, Vibrio anguillarum and Aeromonas hydrophila. Thus, this probe may provide a new means to diagnose bacterial kidney disease in asymptomatic fish and ova.The authors are with the instituto de Bioquímica, Universidad Austral de Chile, P.O. Box 567, Valdivia, Chile  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号