首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Host specificity has a major influence on a parasite's ability to shift between human and animal host species. Yet there is a dearth of quantitative approaches to explore variation in host specificity across biogeographical scales, particularly in response to the varying community compositions of potential hosts. We built a global dataset of intermediate host associations for nine of the world's most widespread helminth parasites (all of which infect humans). Using hierarchical models, we asked if realised parasite host specificity varied in response to regional variation in the phylogenetic and functional diversities of potential host species. Parasites were recorded in 4–10 zoogeographical regions, with some showing considerable geographical variation in observed versus expected host specificity. Parasites generally exhibited the lowest phylogenetic host specificity in regions with the greatest variation in prospective host phylogenetic diversity, namely the Neotropical, Saharo‐Arabian and Australian regions. Globally, we uncovered notable variation in parasite host shifting potential. Observed host assemblages for Hydatigera taeniaeformis and Hymenolepis diminuta were less phylogenetically diverse than expected, suggesting limited potential to spillover into unrelated hosts. Host assemblages for Echinococcus granulosus, Mesocestoides lineatus and Trichinella spiralis were less functionally diverse than expected, suggesting limited potential to shift across host ecological niches. By contrast, Hyd. taeniaeformis infected a higher functional diversity of hosts than expected, indicating strong potential to shift across hosts with different ecological niches. We show that the realised phylogenetic and functional diversities of infected hosts are determined by biogeographical gradients in prospective host species pools. These findings emphasise the need to account for underlying species diversity when assessing parasite host specificity. Our framework to identify variation in realised host specificity is broadly applicable to other host–parasite systems and will provide key insights into parasite invasion potential at regional and global scales.  相似文献   

2.
    
A contemporary goal in both ecology and evolutionary biology is to develop theory that transcends the boundary between the two disciplines, to understand phenomena that cannot be explained by either field in isolation. This is challenging because macroevolution typically uses lineage‐based models, whereas ecology often focuses on individual organisms. Here, we develop a new parsimonious individual‐based theory by adding mild selection to the neutral theory of biodiversity. We show that this model generates realistic phylogenies showing a slowdown in diversification and also improves on the ecological predictions of neutral theory by explaining the occurrence of very common species. Moreover, we find the distribution of individual fitness changes over time, with average fitness increasing at a pace that depends positively on community size. Consequently, large communities tend to produce fitter species than smaller communities. These findings have broad implications beyond biodiversity theory, potentially impacting, for example, invasion biology and paleontology.  相似文献   

3.
  总被引:1,自引:0,他引:1  
Knapp S  Kühn I  Schweiger O  Klotz S 《Ecology letters》2008,11(10):1054-1064
Cities are hotspots of plant species richness, harboring more species than their rural surroundings, at least over large enough scales. However, species richness does not necessarily cover all aspects of biodiversity such as phylogenetic relationships. Ignoring these relationships, our understanding of how species assemblages develop and change in a changing environment remains incomplete. Given the high vascular plant species richness of urbanized areas in Germany, we asked whether these also have a higher phylogenetic diversity than rural areas, and whether phylogenetic diversity patterns differ systematically between species groups characterized by specific functional traits. Calculating the average phylogenetic distinctness of the total German flora and accounting for spatial autocorrelation, we show that phylogenetic diversity of urban areas does not reflect their high species richness. Hence, high urban species richness is mainly due to more closely related species that are functionally similar and able to deal with urbanization. This diminished phylogenetic information might decrease the flora's capacity to respond to environmental changes.  相似文献   

4.
    
Aim The global richness gradient of angiosperm families is correlated with current climate, and it has been claimed that historical processes are not necessary to understand patterns of plant family richness. This claim has drawn criticism, and there have been doubts about the quality of the data used to quantify the pattern. We revisit this issue using the Angiosperm Phylogeny Group (APG) III classification and revised range maps, and we incorporate an evolutionary variable, family age, to explore covariation between evolution and ecology and their links to climate via the tropical conservatism hypothesis (TCH). Location Global. Methods The richness pattern for 408 families was derived from range maps, and family ages were derived from a dated angiosperm phylogeny. Patterns were generated for all families, 143 families composed of trees, and 149 families composed of herbs. We also examined family range size patterns to test the extent to which extratropical floras are nested subsets of tropical floras. Ordinary least squares (OLS) multiple and partial regressions were used to generate climate models for richness, mean range size and mean age for each plant dataset and to evaluate the covariation between contemporary climate and clade age as correlates of family richness. Results We confirmed the strong association between contemporary climate and family richness. Age patterns predicted by TCH were also found for families comprising trees. The richness of herbaceous families, in contrast, was correlated with climate but the age pattern was not as predicted by TCH. Floras in cold and dry areas are strongly nested within richer tropical floras. Main conclusions Phylogenetic niche conservatism at the family level offers a likely explanation for the global diversity gradient of trees, but not for non‐desert herbs, probably because of the faster evolutionary rates for herbs and less constrained evolutionary responses to climate change. Thus, it appears that multiple processes account for the overall angiosperm family gradient. Our analysis also demonstrates that even very strong associations of taxon richness and climate do not preclude evolutionary processes, as has been widely argued, and that climatic and evolutionary hypotheses for richness gradients are not mutually exclusive.  相似文献   

5.
    
Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species‐level distribution data for the conifer‐feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host‐specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host‐specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.  相似文献   

6.
    
  相似文献   

7.
    
Actinopterygii (ray‐finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of ‘fish’ evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic–Cainozoic interval. This approach provides information on the ‘fish’ fossil record quality and on the corrected ‘fish’ deep‐time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil‐like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early–Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene–Eocene interval (all groups), the latter two representing the two most exceptional radiations among vertebrates. For each of these events along with the Cretaceous‐Paleogene extinction, we provide an in‐depth review of the taxa involved and factors that may have influenced the diversity patterns observed. Among these, palaeotemperatures, sea‐levels, ocean circulation and productivity as well as continent fragmentation and environment heterogeneity (reef environments) are parameters that largely impacted on ‘fish’ evolutionary history, along with other biotic constraints.  相似文献   

8.
    
Mass extinctions are crucial to understanding changes in biodiversity through time. However, it is still disputed whether extinction dynamics in the marine and terrestrial biotas followed comparable trajectories. For instance, while marine realms have suffered five strong depletions in diversity, the so-called ‘Big Five’ mass extinctions, only the end-Permian event appears to have also resulted in a major abrupt reduction in continental diversity. However, recent evidence based on the diversity dynamics of vegetation has suggested the presence of two major episodes of extinction in the terrestrial environments, at the end-Carboniferous and the end-Permian times. This apparent contradiction is addressed in the present study. Here, we show that while the end-Carboniferous plant extinction was focused on particular environments (e.g. tropical wetlands) and affected mainly the free-sporing plant diversity (i.e. lycopsids, ferns and progymnosperms), only the end-Permian mass extinction had devastating effects on vegetation on a global scale. If we take the biosphere as a whole, the results highlight that the end-Permian biotic crisis was the only genuine global mass extinction event, affecting widely both the marine and terrestrial environments.  相似文献   

9.
    
Population genetic theory predicts that adaptation in novel environments is enhanced by genetic variation for fitness. However, theory also predicts that under strong selection, demographic stochasticity can drive populations to extinction before they can adapt. We exposed wheat-adapted populations of the flour beetle (Tribolium castaneum) to a novel suboptimal corn resource, to test the effects of founding genetic variation on population decline and subsequent extinction or adaptation. As previously reported, genetically diverse populations were less likely to go extinct. Here, we show that among surviving populations, genetically diverse groups recovered faster after the initial population decline. Within two years, surviving populations significantly increased their fitness on corn via increased fecundity, increased egg survival, faster larval development, and higher rate of egg cannibalism. However, founding genetic variation only enhanced the increase in fecundity, despite existing genetic variation-and apparent lack of trade-offs-for egg survival and larval development time. Thus, during adaptation to novel habitats the positive impact of genetic variation may be restricted to only a few traits, although change in many life-history traits may be necessary to avoid extinction. Despite severe initial maladaptation and low population size, genetic diversity can thus overcome the predicted high extinction risk in new habitats.  相似文献   

10.
Antarctic notothenioid fishes represent a rare example of a marine species flock. They evolved special adaptations to the extreme environment of the Southern Ocean including antifreeze glycoproteins. Although lacking a swim bladder, notothenioids have diversified from their benthic ancestor into a wide array of water column niches, such as epibenthic, semipelagic, cryopelagic and pelagic habitats. Applying stable carbon (C) and nitrogen (N) isotope analyses to gain information on feeding ecology and foraging habitats, we tested whether ecological diversification along the benthic–pelagic axis followed a single directional trend in notothenioids, or whether it evolved independently in several lineages. Population samples of 25 different notothenioid species were collected around the Antarctic Peninsula, the South Orkneys and the South Sandwich Islands. The C and N stable isotope signatures span a broad range (mean δ13C and δ15N values between ?25.4‰ and ?21.9‰ and between 8.5‰ and 13.8‰, respectively), and pairwise niche overlap between four notothenioid families was highly significant. Analysis of isotopic disparity‐through‐time on the basis of Bayesian inference and maximum‐likelihood phylogenies, performed on a concatenated mitochondrial (cyt b) and nuclear gene (myh6, Ptr and tbr1) data set (3148 bp), showed that ecological diversification into overlapping feeding niches has occurred multiple times in parallel in different notothenioid families. This convergent diversification in habitat and trophic ecology is a sign of interspecific competition and characteristic for adaptive radiations.  相似文献   

11.
Evolutionary diversification of clades of squamate reptiles   总被引:2,自引:0,他引:2  
We analysed the diversification of squamate reptiles (7488 species) based on a new molecular phylogeny, and compared the results to similar estimates for passerine birds (5712 species). The number of species in each of 36 squamate lineages showed no evidence of phylogenetic conservatism. Compared with a random speciation-extinction process with parameters estimated from the size distribution of clades, the alethinophidian snakes (2600 species) were larger than expected and 13 clades, each having fewer than 20 species, were smaller than expected, indicating rate heterogeneity. From a lineage-through-time plot, we estimated that a provisional rate of lineage extinction (0.66 per Myr) was 94% of the rate of lineage splitting (0.70 per Myr). Diversification in squamate lineages was independent of their stem age, but strongly related to the area of the region within which they occur. Tropical vs. temperate latitude exerted a marginally significant influence on species richness. In comparison with passerine birds, squamates share several clade features, including: (1) independence of species richness and age; (2) lack of phylogenetic signal with respect to clade size; (3) general absence of exceptionally large clades; (4) over-representation of small clades; (5) influence of region size on clade size; and (6) similar rates of speciation and extinction. The evidence for both groups suggests that clade size has achieved long-term equilibrium, suggesting negative feedback of species richness on the rate of diversification.  相似文献   

12.
Coevolutionary studies on plants and plant‐feeding insects have significantly improved our understanding of the role of niche shifts in the generation of new species. Evolving plant lineages essentially constitute moving islands and archipelagoes in resource space, and host shifts by insects are usually preceded by colonizations of novel resources. Critical to hypotheses concerning ecological speciation is what happens immediately before and after colonization attempts: if an available plant is too similar to the current host(s), it simply will be incorporated into the existing diet, but if it is too different, it will not be colonized in the first place. It thus seems that the probability of speciation is maximized when alternative hosts are at an ‘intermediate’ distance in resource space. In this review, I wish to highlight the possibility that resource similarity and, thus, the definition of ‘intermediate’, are subjective concepts that depend on the herbivore lineage's tolerance to dietary variation. This subjectivity of similarity means that changes in tolerance can either decrease or increase speciation probabilities depending on the distribution of plants in resource space: insect lineages with narrow tolerances are likely to speciate by ‘island‐hopping’ on young, species‐rich plant groups, whereas more generalized lineages could speciate by shifting among resource archipelagoes formed by higher plant taxa. Repeated and convergent origins of traits known to broaden or to restrict host‐plant use in multiple different insect groups provide opportunities for studying how tolerance and resource heterogeneity may interact to determine speciation rates.  相似文献   

13.
14.
At least half of metazoan species are herbivorous insects. Why are they so diverse? Most herbivorous insects feed on few plant species, and adaptive host specialization is often invoked to explain their diversification. Nevertheless, it is possible that the narrow host ranges of many herbivorous insects are nonadaptive. Here, we test predictions of this hypothesis with comparative phylogenetic analyses of scale insects, a group for which there appear to be few host‐use trade‐offs that would select against polyphagy, and for which passive wind‐dispersal should make host specificity costly. We infer a strong positive relationship between host range and diversification rate, and a marked asymmetry in cladogenetic changes in diet breadth. These results are consonant with a system of pervasive nonadaptive host specialization in which small, drift‐ and extinction‐prone populations are frequently isolated from persistent and polyphagous source populations. They also contrast with the negative relationship between diet breadth and taxonomic diversification that has been estimated in butterflies, a disparity that likely stems from differences in the average costs and benefits of host specificity and generalism in scale insects versus butterflies. Our results indicate the potential for nonadaptive processes to be important to diet‐breadth evolution and taxonomic diversification across herbivorous insects.  相似文献   

15.
    
Aim To test whether environmental diversification played a role in the diversification of the New Caledonian Hydropsychinae caddisflies. Location New Caledonia, south‐west Pacific. Methods The phylogeny of the New Caledonian Hydropsychinae caddisflies was hypothesized using parsimony and Bayesian methods on molecular characters. The Bayesian analysis was the basis for a comparative analysis of the correlation between phylogeny and three environmental factors: geological substrate (ultrabasic, non‐ultrabasic), elevation and precipitation. Phylogenetic divergence times were estimated using a relaxed clock method, and environmental factors were mapped onto a lineage‐through‐time plot to investigate the timing of environmental diversification in relation to species radiation. The correlation between rainfall and elevation was tested using independent contrasts, and the gamma statistic was calculated to infer the diversification pattern of the group. Results The diversification of extant Orthopsyche–Caledopsyche species began in the Middle–Late Oligocene, when much of the island of New Caledonia was covered by ultrabasic substrate and mountain forming was prevalent. Most lineages originated in the Middle–Late Miocene, a period associated with long‐term climate oscillation. Optimization of environmental factors on the phylogeny demonstrated that the New Caledonian Hydropsychinae group adapted to ultrabasic substrate early in its evolutionary history. The clade living mostly on ultrabasic substrate was far more species‐rich than the clade living mostly on non‐ultrabasic substrate. Elevation and rainfall were significantly correlated with each other. The lineage‐through‐time plot revealed that the main environmental diversification preceded species diversification. A constant speciation through time was rejected, and the negative gamma indicates that most of the diversification occurred early in the history of the clade. According to the inferred phylogeny, the genus Orthopsyche McFarlane is a synonym under Caledopsyche Kimmins, and Abacaria caledona Oláh & Barnard should also be included in Caledopsyche. Main conclusions The age of the radiation does not support a vicariance origin of New Caledonian Hydropsychinae caddisflies. Environmental diversification pre‐dates lineage diversification, and thus environmental heterogeneity potentially played a role in the diversification of the group, by providing a variety of fragmented habitats to disperse into, promoting speciation. The negative gamma indicates that the speciation rate slowed as niches started to fill.  相似文献   

16.
    
Positive plant–plant interactions (facilitation) may enhance the recruitment and establishment of species less adapted to local macroclimatic conditions. A major cause of this effect is climatic buffering, which implies an increased mismatch between the macroclimatic conditions and the climatic requirements of the existing community – climatic disequilibrium – of plants living under canopies. Here we explore the effect of drought-induced defoliation of Mediterranean shrubland canopy on the recruitment of woody species. We analyzed the differences in the climatic disequilibrium across different categories of canopy defoliation and plant–plant interactions: facilitation, neutral and inhibition. Climatic disequilibrium was estimated as the Euclidean distance in the multivariate environmental space between observed macroclimate and community inferred climate. The inferred climate was calculated by averaging the coordinates of the species' climatic niche centroids, obtained from species distribution, weighted by the species' relative abundances in each community. We found that the recruiting community growing under canopy showed higher climatic disequilibrium than the community growing in the gaps. The facilitated recruiting community growing under dead and living canopy showed the highest disequilibrium, followed by the community growing under mid-affected canopy. The climatic disequilibrium of the recruiting communities experiencing neutral and inhibited interaction was not affected by canopy defoliation. These findings indicate that the climatic disequilibrium of the recruiting community is determined by the facilitation–competition balance. Living canopy provides climatic buffering, but it also implies competition, while dead canopy may provide some structural climatic buffering, without implying competition for resources. These results highlight the relevance of incorporating plant–plant interactions, particularly facilitation, to better forecast plant community responses to extreme climate events and climate change.  相似文献   

17.
18.
19.
    
Aim The relative importance of current climate and past historical legacies is hotly debated. Here, we assess their role in determining the global distribution and diversity patterns of palms (Arecaceae), a widespread, species‐rich group of keystone ecological importance in tropical ecosystems. Location Global. Methods We assembled country‐level species lists world‐wide and compiled associated data on potential contemporary environmental drivers (current climate, habitat heterogeneity, area, and insularity), Quaternary glacial–interglacial climate change and major biogeographic regions to evaluate to what extent the global distribution and species richness patterns in palms reflect Quaternary climatic oscillations or regional effects reflecting pre‐Quaternary legacies. We also assessed for the first time if historical legacies differ between continents and islands, providing novel insights into determinants of insular species richness. Results Palm species richness was significantly affected by Quaternary climate changes and further differed between biogeographic regions even when both current environmental conditions and Quaternary climate changes were accounted for. In contrast, global limits to the distribution of the palm family were best explained by current temperature while biogeographic regional differences were unimportant and Quaternary climate change caused only a small constraint. Historical legacies were weak on islands, with only a small regional effect and no effect of Quaternary climate changes. Main conclusions Strong historical legacies supplement current environment as determinants of palm species richness. These primarily comprise pre‐Quaternary historical effects, reflected in low African species richness (possibly linked to pre‐Quaternary extinctions) and outstandingly high Neotropical and Indomalayan palm species richness (possibly linked to these regions' long‐term climatic suitability for palms). In contrast to species richness, the global distribution of the family range is largely in equilibrium with current climate. The small historical effects on islands are consistent with climatic buffering from their oceanic environment.  相似文献   

20.
    
Directional dispersal plays a large role in shaping ecological processes in diverse systems such as rivers, coastlines and vegetation communities. We describe an instability driven by directional dispersal in a spatially explicit consumer-producer model where spatial patterns emerge in the absence of external environmental variation. Dispersal of the consumer has both undirected and directed components that are functions of producer biomass. We demonstrate that directional dispersal is required for the instability, while undirected diffusive dispersal sets a lower bound to the spatial scale of emerging patterns. Furthermore, instability requires indirect feedbacks affecting consumer per capita dispersal rates, and not activator-inhibitor dynamics affecting production and mortality as is described in previous theory. This novel and less-restrictive mechanism for generating spatial patterns can arise over realistic parameter values, which we explore using an empirically inspired model and data on stream macroinvertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号