首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit α‐ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD+‐specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence.  相似文献   

2.
The mollicutes are cell wall-less bacteria that live in close association with their eukaryotic hosts. Their genomes are strongly reduced and so are their metabolic capabilities. A survey of the available genome sequences reveals that the mollicutes are capable of utilizing sugars as source of carbon and energy via glycolysis. The pentose phosphate pathway is incomplete in these bacteria, and genes encoding enzymes of the tricarboxylic acid cycle are absent from the genomes. Sugars are transported by the phosphotransferase system. As in related bacteria, the phosphotransferase system does also seem to play a regulatory role in the mollicutes as can be concluded from the functionality of the regulatory HPr kinase/phosphorylase. In Mycoplasma pneumoniae, the activity of HPr kinase is triggered in the presence of glycerol. This carbon source may be important for the mollicutes since it is available in epithelial tissues and its metabolism results in the formation of hydrogen peroxide, the major virulence factor of several mollicutes. In plant-pathogenic mollicutes such as Spiroplasma citri, the regulation of carbon metabolism is crucial in the adaptation to life in plant tissues or the insect vectors. Thus, carbon metabolism seems to be intimately linked to pathogenicity in the mollicutes.  相似文献   

3.
Under conditions of nutrient stress, cells switch to a survival mode catabolizing cellular and tissue constituents for energy. Proline metabolism is especially important in nutrient stress because proline is readily available from the breakdown of extracellular matrix (ECM), and the degradation of proline through the proline cycle initiated by proline oxidase (POX), a mitochondrial inner membrane enzyme, can generate ATP. This degradative pathway generates glutamate and α‐ketoglutarate, products that can play an anaplerotic role for the TCA cycle. In addition the proline cycle is in a metabolic interlock with the pentose phosphate pathway providing another bioenergetic mechanism. Herein we have investigated the role of proline metabolism in conditions of nutrient stress in the RKO colorectal cancer cell line. The induction of stress either by glucose withdrawal or by treatment with rapamycin, stimulated degradation of proline and increased POX catalytic activity. Under these conditions POX was responsible, at least in part, for maintenance of ATP levels. Activation of AMP‐activated protein kinase (AMPK), the cellular energy sensor, by 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR), also markedly upregulated POX and increased POX‐dependent ATP levels, further supporting its role during stress. Glucose deprivation increased intracellular proline levels, and expression of POX activated the pentose phosphate pathway. Together, these results suggest that the induction of proline cycle under conditions of nutrient stress may be a mechanism by which cells switch to a catabolic mode for maintaining cellular energy levels. J. Cell. Biochem. 107: 759–768, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Pupylation is a post-translational protein modification occurring in actinobacteria through which the small, intrinsically disordered protein Pup (prokaryotic ubiquitin-like protein) is conjugated to lysine residues of proteins, marking them for proteasomal degradation. Although functionally related to ubiquitination, pupylation is carried out by different enzymes that are evolutionarily linked to bacterial carboxylate-amine ligases. Here, we compare the mechanism of Pup-conjugation to target proteins with ubiquitination, describe the evolutionary emergence of pupylation and discuss the importance of this pathway for survival of Mycobacterium tuberculosis in the host.  相似文献   

5.
Haloarchaea (class Halobacteria) live in extremely halophilic conditions and evolved many unique metabolic features, which help them to adapt to their environment. The methylaspartate cycle, an anaplerotic acetate assimilation pathway recently proposed for Haloarcula marismortui, is one of these special adaptations. In this cycle, acetyl-CoA is oxidized to glyoxylate via methylaspartate as a characteristic intermediate. The following glyoxylate condensation with another molecule of acetyl-CoA yields malate, a starting substrate for anabolism. The proposal of the functioning of the cycle was based mainly on in vitro data, leaving several open questions concerning the enzymology involved and the occurrence of the cycle in halophilic archaea. Using gene deletion mutants of H. hispanica, enzyme assays and metabolite analysis, we now close these gaps by unambiguous identification of the genes encoding all characteristic enzymes of the cycle. Based on these results, we were able to perform a solid study of the distribution of the methylaspartate cycle and the alternative acetate assimilation strategy, the glyoxylate cycle, among haloarchaea. We found that both of these cycles are evenly distributed in haloarchaea. Interestingly, 83% of the species using the methylaspartate cycle possess also the genes for polyhydroxyalkanoate biosynthesis, whereas only 34% of the species with the glyoxylate cycle are capable to synthesize this storage compound. This finding suggests that the methylaspartate cycle is shaped for polyhydroxyalkanoate utilization during carbon starvation, whereas the glyoxylate cycle is probably adapted for growth on substrates metabolized via acetyl-CoA.  相似文献   

6.
7.
Does proline play a special role in bacteroid metabolism?   总被引:1,自引:0,他引:1  
Dicarboxylates are generally considered the main energy-bearing compounds imported from plant cells into bacteroids in root nodules. Evidence reviewed herein supports the hypothesis that other compounds contribute and that proline catabolism may have particular importance in bacteroid metabolism during environmental stress.  相似文献   

8.
Regulation of stearoyl-CoA desaturases and role in metabolism   总被引:17,自引:0,他引:17  
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (18:1) and palmitoleate (16:1). These represent the major monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters and cholesterol esters. The ratio of saturated to monounsaturated fatty acids affects phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, and cancer. For this reason, the expression of SCD is of physiological significance in both normal and disease states. Several SCD gene isoforms (SCD1, SCD2, SCD3) exist in the mouse and one SCD isoform that is highly homologous to the mouse SCD1 is well characterized in human. The physiological role of each SCD isoform and the reason for having three or more SCD gene isoforms in the rodent genome are currently unknown but could be related the substrate specificities of the isomers and their regulation through tissue-specific expression. The recent studies of asebia mouse strains that have a natural mutation in the SCD1 gene and a mouse model with a targeted disruption of the SCD1 gene have provided clues concerning the role that SCD1 and its endogenous products play in the regulation of metabolism.  相似文献   

9.
Prolidase is a multifunctional enzyme that possesses the unique ability to degrade imidodipeptides in which a proline or hydroxyproline residue is located at the C-terminal end. Prolidases have been isolated from archaea and bacteria, where they are thought to participate in proline recycling. In mammalian species, prolidases are found in the cytoplasm and function primarily to liberate proline in the final stage of protein catabolism, particularly during the biosynthesis and degradation of collagen. Collagen comprises nearly one-third of the total protein in the body, and it is essential in maintaining tissue structure and integrity. Prolidase deficiency (PD), a rare autosomal recessive disorder in which mutations in the PEPD gene affect prolidase functionality, tends to have serious and sometimes life-threatening clinical symptoms. Recombinant prolidases have many applications and have been investigated not only as a possible treatment for PD, but also as a part of anti-cancer strategies, a component of biodecontamination cocktails and in the dairy industry. This review will serve to discuss the many in vivo functions of procaryotic and eucaryotic prolidases, as well as the most recent advances in therapeutic and biotechnological application of prolidases.  相似文献   

10.
11.
Regulation of primary carbon metabolism in Kluyveromyces lactis   总被引:2,自引:0,他引:2  
In the recent past, through advances in development of genetic tools, the budding yeast Kluyveromyces lactis has become a model system for studies on molecular physiology of so-called “Nonconventional Yeasts.” The regulation of primary carbon metabolism in K. lactis differs markedly from Saccharomyces cerevisiae and reflects the dominance of respiration over fermentation typical for the majority of yeasts. The absence of aerobic ethanol formation in this class of yeasts represents a major advantage for the “cell factory” concept and large-scale production of heterologous proteins in K. lactis cells is being applied successfully. First insight into the molecular basis for the different regulatory strategies is beginning to emerge from comparative studies on S. cerevisiae and K. lactis. The absence of glucose repression of respiration, a high capacity of respiratory enzymes and a tight regulation of glucose uptake in K. lactis are key factors determining physiological differences to S. cerevisiae. A striking discrepancy exists between the conservation of regulatory factors and the lack of evidence for their functional significance in K. lactis. On the other hand, structurally conserved factors were identified in K. lactis in a new regulatory context. It seems that different physiological responses result from modified interactions of similar molecular modules.  相似文献   

12.
The importance of alpha-adrenergic receptors in the cardiac output and peripheral circulatory responses to carbon monoxide (CO) hypoxia was studied in anesthetized dogs. Phenoxybenzamine (3 mg/kg i.v.) was injected to block alpha-receptor activity and the data obtained were then compared with those from a previous study of CO hypoxia in unblocked animals. Values for cardiac output, hindlimb blood flow, vascular resistance, and oxygen uptake were obtained prior to and at 30 and 60 min of CO hypoxia which reduced arterial oxygen content by approximately 50%. alpha-Adrenergic blockade resulted in a lower (p less than 0.05) control value for cardiac output than observed in unblocked animals, but no differences were present between the two groups at 30 or 60 min of CO hypoxia. Similarly, limb blood flow was lower (p less than 0.05) during the control period in the alpha-blocked group but rose to the same level as that in the unblocked animals at 60 min of COH. No change in limb blood flow occurred during CO hypoxia in the unblocked group. These findings demonstrated that during CO hypoxia alpha-receptor mediated venoconstriction does not contribute to the cardiac output response and alpha-receptor mediated vasoconstriction probably does prevent a rise in hindlimb skeletal muscle blood flow.  相似文献   

13.
A newly discovered enzyme in mammalian tissues, aspartate-4-decarboxylase (EC 4.1.1.12), catalyzes the exothermic conversion of aspartate to alanine and CO2. The occurrence of this enzyme poses at least two important questions. First, what is the purpose of such an enzyme in cell physiology? There are alternate ways to convert aspartate to alanine which are rapid and which conserve energy. Second, since the synthesis of aspartate is an energy-requiring process, how can the cell limit undue energy drain by this, seemingly pointless, beta-decarboxylation of aspartate? It is demonstrated that rat liver aspartate-4-decarboxylase is inhibited by acetyl-coenzyme A and stimulated by glutamate. These regulatory properties were predicted a priori. It was suggested that, in coordination with pyruvate carboxylase, aspartate-4-decarboxylase is important in regulating the metabolic fate of oxaloacetate and thus plays a role in determining the efficiency of carbohydrate metabolism. Furthermore, reciprocal regulation of rat liver pyruvate carboxylase and aspartate-4-decarboxylase would assure a limit on the extent of futile cycling that may occur between these enzymes.  相似文献   

14.
Intermediary metabolism of mycobacteria   总被引:7,自引:0,他引:7  
  相似文献   

15.
Proline-induced germ-tube formation and cell-cell aggregation in four strains of Candida albicans were completely inhibited when the pH of the medium was 5.0 or lower, whereas morphogenesis induced by N-acetylglucosamine (GlcNAc) was unaffected even at pH 4.5. The pH sensitivity of proline-induced germ-tube formation was not caused by a modulation of proline uptake, which was unchanged over the pH range 4.5-6.5. The proline uptake system was specific, constitutive and subject to ammonium repression, and only one permease was detected, with a Km of 179 microM. Cultures deprived of nitrogen in the presence of glucose were derepressed for proline uptake but the yeast-mycelial transition could not be mediated by either proline or GlcNAc. The inhibition of morphogenesis was reversed when the nitrogen starvation was relieved by the addition of ammonium ions, proline, or certain amino acids. These results indicate that the nitrogen status of the cells is critical for the morphogenesis of C. albicans.  相似文献   

16.
Analysis of the rate-limiting dehydrogenases of the oxidative pentosephosphate pathway (OPPP), as well as changes in the contributions of14C1- and 14C6-labelled glucose torespired CO2 during germination, indicated activation of the OPPPduring Arabidopsis seed germination. An approximatelyfour-fold increase in free proline (Pro) was also observed prior to radicleemergence in most seeds. Delayed radicle emergence in transgenicArabidopsis seeds which expressed an antisense copy of thegene encoding the Pro biosynthetic enzyme1-pyrroline-5-carboxylate synthetase correlated with anapproximately 35% reduction in the maximal concentration of Pro accumulated bythe antisense lines during germination. A dose-dependent inhibition ofArabidopsis seed germination by millimolar concentrationsof Pro capable of feedback inhibition of Pro synthesis reinforced the role ofPro synthesis in promoting germination. The ability of the artificial oxidantsmethylene blue and phenazine ethosulphate to overcome the inhibitory effects ofPro suggests a functional link between elevated Pro synthesis and increasedOPPPactivity and the importance of coupling of both pathways in stimulatinggermination.  相似文献   

17.
18.
19.
Understanding the cellular pathways that regulate angiogenesis during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. Although the pathways of angiogenesis have been extensively studied, there is limited information on the role of miRNAs in this process. miRNAs or their antagomirs could be used in future therapeutic approaches to regulate hypoxia-induced angiogenesis, so it is critical to understand their role in governing angiogenesis during hypoxic conditions. Although hypoxia and ischemia change the expression profile of many miRNAs, a functional role for a limited number of so-called hypoxamiRs has been demonstrated in angiogenesis. Here, we discuss the best examples that illustrate the role of hypoxamiRs in angiogenesis.  相似文献   

20.
Acid‐extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid‐extrusion remains unclear. We studied pH‐regulation under normoxia and hypoxia in eight cancer cell‐lines (HCT116, RT112, MDA‐MB‐468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH‐sensitive fluorophore, cSNARF‐1. Hypoxia responses were triggered by pre‐incubation in low O2 or with the 2‐oxoglutarate‐dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport‐substrate removal, acid‐extrusion flux was dissected into components due to Na+/H+ exchange (NHE) and Na+‐dependent HCO transport. In half of the cell‐lines (HCT116, RT112, MDA‐MB‐468, MCF10A), acid‐extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA‐MB‐468), NHE‐flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that <4‐h hypoxic incubation reduced NHE‐flux reversibly with a time‐constant of 1–2 h. This was not associated with a change in expression of NHE1, the principal NHE isoform. Following 48‐h hypoxia, inhibition of NHE‐flux persisted but became only slowly reversible and associated with reduced expression of the glycosylated form of NHE1. Acid‐extrusion by Na+‐dependent HCO transport was hypoxia‐insensitive and comparable in all cell lines. This constitutive and stable element of pH‐regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell‐specific differences in their dynamic response to larger acid loads. J. Cell. Physiol. 228: 743–752, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号