首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a set of computational problems motivated by certain analysis tasks in genome resequencing. These are assembly problems for which multiple distinct sequences must be assembled, but where the relative positions of reads to be assembled are already known. This information is obtained from a common reference genome and is characteristic of resequencing experiments. The simplest variant of the problem aims at determining a minimum set of superstrings such that each sequenced read matches at least one superstring. We give an algorithm with time complexity O(N), where N is the sum of the lengths of reads, substantially improving on previous algorithms for solving the same problem. We also examine the problem of finding the smallest number of reads to remove such that the remaining reads are consistent with k superstrings. By exploiting a surprising relationship with the minimum cost flow problem, we show that this problem can be solved in polynomial time when nested reads are excluded. If nested reads are permitted, this problem of removing the minimum number of reads becomes NP-hard. We show that permitting mismatches between reads and their nearest superstrings generally renders these problems NP-hard.  相似文献   

2.
3.
4.
? Premise of the study: Next-generation sequencing (NGS) technologies are frequently used for resequencing and mining of single nucleotide polymorphisms (SNPs) by comparison to a reference genome. In crop species such as chickpea (Cicer arietinum) that lack a reference genome sequence, NGS-based SNP discovery is a challenge. Therefore, unlike probability-based statistical approaches for consensus calling and by comparison with a reference sequence, a coverage-based consensus calling (CbCC) approach was applied and two genotypes were compared for SNP identification. ? Methods: A CbCC approach is used in this study with four commonly used short read alignment tools (Maq, Bowtie, Novoalign, and SOAP2) and 15.7 and 22.1 million Illumina reads for chickpea genotypes ICC4958 and ICC1882, together with the chickpea trancriptome assembly (CaTA). ? Key results: A nonredundant set of 4543 SNPs was identified between two chickpea genotypes. Experimental validation of 224 randomly selected SNPs showed superiority of Maq among individual tools, as 50.0% of SNPs predicted by Maq were true SNPs. For combinations of two tools, greatest accuracy (55.7%) was reported for Maq and Bowtie, with a combination of Bowtie, Maq, and Novoalign identifying 61.5% true SNPs. SNP prediction accuracy generally increased with increasing reads depth. ? Conclusions: This study provides a benchmark comparison of tools as well as read depths for four commonly used tools for NGS SNP discovery in a crop species without a reference genome sequence. In addition, a large number of SNPs have been identified in chickpea that would be useful for molecular breeding.  相似文献   

5.
6.

Background

One of the important steps in the process of assembling a genome sequence from short reads is scaffolding, in which the contigs in a draft genome are ordered and oriented into scaffolds. Currently, several scaffolding tools based on a single reference genome have been developed. However, a single reference genome may not be sufficient alone for a scaffolder to generate correct scaffolds of a target draft genome, especially when the evolutionary relationship between the target and reference genomes is distant or some rearrangements occur between them. This motivates the need to develop scaffolding tools that can order and orient the contigs of the target genome using multiple reference genomes.

Results

In this work, we utilize a heuristic method to develop a new scaffolder called Multi-CSAR that is able to accurately scaffold a target draft genome based on multiple reference genomes, each of which does not need to be complete. Our experimental results on real datasets show that Multi-CSAR outperforms other two multiple reference-based scaffolding tools, Ragout and MeDuSa, in terms of many average metrics, such as sensitivity, precision, F-score, genome coverage, NGA50, scaffold number and running time.

Conclusions

Multi-CSAR is a multiple reference-based scaffolder that can efficiently produce more accurate scaffolds of a target draft genome by referring to multiple complete and/or incomplete genomes of related organisms. Its stand-alone program is available for download at https://github.com/ablab-nthu/Multi-CSAR.
  相似文献   

7.
High-throughput DNA sequencing (HTS) is of increasing importance in the life sciences. One of its most prominent applications is the sequencing of whole genomes or targeted regions of the genome such as all exonic regions (i.e., the exome). Here, the objective is the identification of genetic variants such as single nucleotide polymorphisms (SNPs). The extraction of SNPs from the raw genetic sequences involves many processing steps and the application of a diverse set of tools. We review the essential building blocks for a pipeline that calls SNPs from raw HTS data. The pipeline includes quality control, mapping of short reads to the reference genome, visualization and post-processing of the alignment including base quality recalibration. The final steps of the pipeline include the SNP calling procedure along with filtering of SNP candidates. The steps of this pipeline are accompanied by an analysis of a publicly available whole-exome sequencing dataset. To this end, we employ several alignment programs and SNP calling routines for highlighting the fact that the choice of the tools significantly affects the final results.  相似文献   

8.
The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome. We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.  相似文献   

9.
ABSTRACT: BACKGROUND: A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.). RESULTS: The first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar 'Chandler' were mapped to 48,661 'Chandler' bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium BeadChip, which was used to genotype a walnut mapping population having 'Chandler' as one of the parents. Genotyping results were used to adjust the filtering parameters of the updated AGSNP pipeline. With the adjusted filtering criteria, 69.6% of SNPs discovered with the updated pipeline were real and could be mapped on the walnut genetic map. A total of 13,439 SNPs were discovered by BES re-sequencing. BESs harboring SNPs were in 677 FPC contigs covering 98% of the physical map of the walnut genome. CONCLUSION: The updated AGSNP pipeline is a versatile SNP discovery tool for a high-throughput, genome-wide SNP discovery in both autogamous and allogamous species. With this pipeline, a large set of SNPs were identified in a single walnut cultivar.  相似文献   

10.
11.
Graphs such as de Bruijn graphs and OLC (overlap-layout-consensus) graphs have been widely adopted for the de novo assembly of genomic short reads. This work studies another important problem in the field: how graphs can be used for high-performance compression of the large-scale sequencing data. We present a novel graph definition named Hamming-Shifting graph to address this problem. The definition originates from the technological characteristics of next-generation sequencing machines, aiming to link all pairs of distinct reads that have a small Hamming distance or a small shifting offset or both. We compute multiple lexicographically minimal k-mers to index the reads for an efficient search of the weight-lightest edges, and we prove a very high probability of successfully detecting these edges. The resulted graph creates a full mutual reference of the reads to cascade a code-minimized transfer of every child-read for an optimal compression. We conducted compression experiments on the minimum spanning forest of this extremely sparse graph, and achieved a 10 − 30% more file size reduction compared to the best compression results using existing algorithms. As future work, the separation and connectivity degrees of these giant graphs can be used as economical measurements or protocols for quick quality assessment of wet-lab machines, for sufficiency control of genomic library preparation, and for accurate de novo genome assembly.  相似文献   

12.

Background

With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps.

Results

We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies.

Conclusions

Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.  相似文献   

13.
We present a generalization of the positional Burrows–Wheeler transform, or PBWT, to genome graphs, which we call the gPBWT. A genome graph is a collapsed representation of a set of genomes described as a graph. In a genome graph, a haplotype corresponds to a restricted form of walk. The gPBWT is a compressible representation of a set of these graph-encoded haplotypes that allows for efficient subhaplotype match queries. We give efficient algorithms for gPBWT construction and query operations. As a demonstration, we use the gPBWT to quickly count the number of haplotypes consistent with random walks in a genome graph, and with the paths taken by mapped reads; results suggest that haplotype consistency information can be practically incorporated into graph-based read mappers. We estimate that with the gPBWT of the order of 100,000 diploid genomes, including all forms structural variation, could be stored and made searchable for haplotype queries using a single large compute node.  相似文献   

14.
The Next-Generation Sequencing (NGS) platforms produce massive amounts of data to analyze various features in environmental samples. These data contain multiple duplicate reads which impact the analyzing process efficiency and accuracy. We describe Fast-HBR, a fast and memory-efficient duplicate reads removing tool without a reference genome using de-novo principles. It uses hash tables to represent reads in integer value to minimize memory usage for faster manipulation. Fast-HBR is faster and has less memory footprint when compared with the state of the art De-novo duplicate removing tools. Fast-HBR implemented in Python 3 is available at https://github.com/Sami-Altayyar/Fast-HBR.  相似文献   

15.
16.
17.
Second-generation sequencing is increasingly being used in combination with genome-enrichment techniques to amplify a large number of loci in many individuals for the purpose of population genetic and phylogeographic analysis. Compiling all the necessary tools to analyse these data is complex and time-consuming. Here, we assemble a set of programs and pipe them together with Perl, enabling research laboratories without a dedicated bioinformatician to utilize second-generation sequencing. User input is a folder of the second-generation sequencing reads sorted by individual (in FASTA format) and pipeline output is a folder of multi-FASTA files that correspond to loci (with 2 alleles called per individual). Additional output includes a summary file of the number of individuals per locus, observed and expected heterozygosity for each locus, distribution of multiple hits and summary statistics (θ, Tajima's D, etc.). This user-friendly, open source pipeline, which requires no a priori reference genome because it constructs its own, allows the user to set various parameters (e.g. minimum coverage) in the dependent programs (CAP3, BWA, SAMtools and VarScan) and facilitates evaluation of the nature and quality of data collected prior to analysis in software packages.  相似文献   

18.
19.
Deep sequencing after bisulfite conversion (BS-Seq) is the method of choice to generate whole genome maps of cytosine methylation at single base-pair resolution. Its application to genomic DNA of Arabidopsis flower bud tissue resulted in the first complete methylome, determining a methylation rate of 6.7% in this tissue. BS-Seq reads were mapped onto an in silico converted reference genome, applying the so-called 3-letter genome method. Here, we present BiSS (Bisufite Sequencing Scorer), a new method applying Smith-Waterman alignment to map bisulfite-converted reads to a reference genome. In addition, we introduce a comprehensive adaptive error estimate that accounts for sequencing errors, erroneous bisulfite conversion and also wrongly mapped reads. The re-analysis of the Arabidopsis methylome data with BiSS mapped substantially more reads to the genome. As a result, it determines the methylation status of an extra 10% of cytosines and estimates the methylation rate to be 7.7%. We validated the results by individual traditional bisulfite sequencing for selected genomic regions. In addition to predicting the methylation status of each cytosine, BiSS also provides an estimate of the methylation degree at each genomic site. Thus, BiSS explores BS-Seq data more extensively and provides more information for downstream analysis.  相似文献   

20.
《Genomics》2021,113(4):2656-2674
Here we report the 409.5 Mb chromosome-level assembly of the first bred semi-dwarf rice, the Taichung Native 1 (TN1), which served as the template for the development of the Green Revolution (GR) cultivar IR8 “miracle rice”. We sequenced the TN1 genome utilizing multiple platforms and produced PacBio long reads, Illumina paired-end reads, Illumina mate-pair reads and 10x Genomics linked reads. We used a hybrid approach to assemble the 226× coverage of sequences by a combination of de novo and reference-guided approaches. The assembled TN1 genome has an N50 scaffold size of 33.1 Mb with the longest measuring 45.5 Mb. We annotated 37,526 genes, in which 24,102 (64.23%) were assigned Blast2GO annotations. The genome has 4672 or 95.4% complete BUSCOs and a repeat content of 51.52%. We developed our own method of creating a GR pangenome using the orthologous relationships of the proteins of TN1, IR8, MH63 and IR64, identifying 16,999 core orthologue groups of Green Revolution. From the pangenome, we identified a set of shared and unique gene ontology terms for the accessory clusters, characterizing TN1, IR8, MH63 and IR64. This TN1 genome assembly and GR pangenome will be a resource for new genomic discoveries about Green Revolution, and for improving the disease and insect resistances and the yield of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号