首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Gene amplification and chromosomal rearrangements are frequent properties of cancer cells, provoking considerable interest in the mechanism of gene amplification and its consequences - particularly its relationship to chromosomal rearrangements. We recently studied the amplification of the gene for adenylate deaminase 2 (AMPD2) in Chinese hamster cells. Using fluorescent in situ hybridization (FISH), we found that early amplification of the AMPD2 gene is based on unequal gene segregation at mitosis, rather than local over-replication. We observed large inverted repeats of the amplified sequences, consistent with an amplification mechanism involving cycles of chromatid breakage, followed by fusion after replication and, in mitosis, the formation of bridges between the fused sister chromatids that leads to further breaks - a process we refer to as chromatid breakage-fusion-bridge (BFB) cycles. Our previous work left open the question of how this mechanism of gene amplification is related, if at all, to the chromosomal rearrangements that generate the dicentric, ring and double-minute (DM) chromosomes observed in some AMPD2-amplified metaphase cells, which are not predicted intermediates of chromatid BFB cycles, although they could be generated by related chromosome BFB cycles. RESULTS: We have addressed this question using FISH with probes for the AMPD2 gene and other markers on the same chromosome. Our results are not consistent with the chromosome BFB cycle mechanism, in which two chromatids break simultaneously and fuse to generate, after replication, a dicentric chromosome. Rather, they suggest that dicentric chromosomes are generated by secondary events that occur during chromatid BFB cycles. Our results also suggest that DM chromosomes are generated by the 'looping-out' of a chromosomal region, generating a circular DNA molecule lacking a centromere; in this case, gene amplification would result from the unequal segregation of DM chromosomes at mitosis. CONCLUSION: We conclude that, at early stages of AMPD2 gene amplification, chromatid BFB cycles are a major source of both 'intrachromosomal' gene amplification and genomic rearrangement, which are first limited to a single chromosome but which can then potentially spread to any additional chromosome. It also seems that, occasionally, a DNA sequence including the AMPD2 gene can be excised, generating a DM chromosome and thus initiating an independent process of 'extrachromosomal' amplification.  相似文献   

2.
Gene amplification is one of the major mechanisms of acquisition of drug resistance and activation of oncogenes in tumors. In mammalian cells, amplified chromosomal regions are manifested cytogenetically as extrachromosomal double minutes (DMs) and chromosomal homogeneously staining regions (HSRs). We recently demonstrated using yeast model system that hairpin-capped double strand breaks (DSBs) generated at the location of human Alu-quasipalindromes can trigger both types of gene amplification. Specifically, the dicentric chromosomes arising from replication of hairpin-capped molecules can be precursors for intrachromosomal amplicons. The formation of HSRs can be accounted for either by breakage-fusion-bridge (BFB) cycle which necessitates nonhomologous end-joining pathway (NHEJ) or by the repair event involving homologous recombination (HR). In this study, we report that intrachromosomal gene amplification mediated by hairpin-capped DSBs is independent of NHEJ machinery, however requires the functions of Rad52 and Rad51 proteins. Based on our observations, we propose a HR-dependent mechanism to explain how the breakage of dicentric chromosomes can lead to the formation of HSRs.  相似文献   

3.
Osteosarcoma (OS) is characterized by chromosomal instability and high copy number gene amplification. The breakage–fusion–bridge (BFB) cycle is a well-established mechanism of genome instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. To determine whether the BFB cycle could be increasing the de novo rate of formation of cytogenetic aberrations in OS, the frequency of anaphase bridge configurations and dicentric chromosomes in four OS cell lines was quantified. An increased level of anaphase bridges and dicentrics was observed in all the OS cell lines. There was also a strong association between the frequencies of anaphase bridges, dicentrics, centrosomal anomalies, and multipolar mitotic figures in all the OS cell lines, indicating a possible link in the mechanisms that led to the structural and numerical instabilities observed in OS. In summary, this study has provided strong support for the role of the BFB cycle in generating the extensive structural chromosome aberrations, as well as cell-to-cell cytogenetic variation observed in OS, thus conferring the genetic diversity for OS tumor progression.  相似文献   

4.
Breakage-fusion-bridge (BFB) cycle is a series of chromosome breaks and duplications that could lead to the increased copy number of a genomic segment (gene amplification). A critical step of BFB cycles leading to gene amplification is a palindromic fusion of sister chromatids following the rupture of a dicentric chromosome during mitosis. It is currently unknown how sister chromatid fusion is produced from a mitotic break. To delineate the process, we took an integrated genomic, cytogenetic and molecular approach for the recurrent MCL1 amplicon at chromosome 1 in human tumor cells. A newly developed next-generation sequencing-based approach identified a cluster of palindromic fusions within the amplicon at ∼50-kb intervals, indicating a series of breaks and fusions by BFB cycles. The physical location of the amplicon (at the end of a broken chromosome) further indicated BFB cycles as underlying processes. Three palindromic fusions were mediated by the homologies between two nearby inverted Alu repeats, whereas the other two fusions exhibited microhomology-mediated events. Such breakpoint sequences indicate that homology-mediated fold-back capping of broken ends followed by DNA replication is an underlying mechanism of sister chromatid fusion. Our results elucidate nucleotide-level events during BFB cycles and end processing for naturally occurring mitotic breaks.  相似文献   

5.
Synchronized oscillation is very commonly observed in many neuronal systems and might play an important role in the response properties of the system. We have studied how the spontaneous oscillatory activity affects the responsiveness of a neuronal network, using a neural network model of the visual cortex built from Hodgkin-Huxley type excitatory (E-) and inhibitory (I-) neurons. When the isotropic local E-I and I-E synaptic connections were sufficiently strong, the network commonly generated gamma frequency oscillatory firing patterns in response to random feed-forward (FF) input spikes. This spontaneous oscillatory network activity injects a periodic local current that could amplify a weak synaptic input and enhance the network's responsiveness. When E-E connections were added, we found that the strength of oscillation can be modulated by varying the FF input strength without any changes in single neuron properties or interneuron connectivity. The response modulation is proportional to the oscillation strength, which leads to self-regulation such that the cortical network selectively amplifies various FF inputs according to its strength, without requiring any adaptation mechanism. We show that this selective cortical amplification is controlled by E-E cell interactions. We also found that this response amplification is spatially localized, which suggests that the responsiveness modulation may also be spatially selective. This suggests a generalized mechanism by which neural oscillatory activity can enhance the selectivity of a neural network to FF inputs.  相似文献   

6.
We have validated the analysis of nucleoplasmic bridges (NPBs) and nuclear buds as biomarkers of genomic instability within the cytokinesis-block micronucleus assay in long-term lymphocyte cultures. Lymphocytes from 20 subjects were cultured in medium containing 12-120 nM folic acid for 9 days. Binucleate cells were scored for micronuclei (MN), NPBs and nuclear budding on day nine after 24h incubation in the presence of the cytokinesis inhibitor cytochalasin-B. Folic acid concentration was correlated significantly (P<0.0001) and negatively (r=-0.63 to -0.74) with all these markers of chromosome damage. Chromosome damage was minimised at 60-120 nM folic acid, which is greater than the concentration of folate normally observed in plasma (<30 nM). Current evidence suggests that (a) NPBs originate from dicentric chromosomes in which the centromeres have been pulled to the opposite poles of the cell at anaphase and are therefore, indicative of chromosome rearrangement and (b) that the nuclear budding process is the mechanism by which cells remove amplified DNA and is therefore a marker of gene amplification. The strong correlation between micronucleus formation, nuclear budding and NPBs (r=0.75-0.77, P<0.001) is supportive of the hypothesis that folic acid deficiency causes genomic instability and gene amplification by the initiation of breakage-fusion-bridge (BFB) cycles. These results also suggest that the CBMN assay may be a useful model for the study of the BFB cycle which may be one of the key mechanisms for the hypermutability phenotype required for the rapid evolution of cancer cells.  相似文献   

7.
Chromosomal instability (CIN) is thought to underlie the generation of chromosomal changes and genomic heterogeneity during prostatic tumorigenesis. The breakage-fusion-bridge (BFB) cycle is one of the CIN mechanisms responsible for characteristic mitotic abnormalities and the occurrence of specific classes of genomic rearrangements. However, there is little detailed information concerning the role of BFB and CIN in generating genomic diversity in prostate cancer. In this study we have used molecular cytogenetic methods and array comparative genomic hybridization analysis (aCGH) of DU145, PC3, LNCaP, 1532T and 1542T to investigate the in vitro role of BFB as a CIN mechanism in karyotype evolution. Analysis of mitotic structures in all five prostate cancer cell lines showed increased frequency of anaphase bridges and nuclear strings. Structurally rearranged dicentric chromosomes were observed in all of the investigated cell lines, and Spectral Karyotyping (SKY) analysis was used to identify the participating rearranged chromosomes. Multicolor banding (mBAND) and aCGH analysis of some of the more complex chromosomal rearrangements and associated amplicons identified inverted duplications, most frequently involving chromosome 8. Chromosomal breakpoint analysis showed there was a higher frequency of rearrangement at centromeric and pericentromeric genomic regions. The distribution of inverted duplications and ladder-like amplifications was mapped by mBAND and by aCGH. Adjacent spacing of focal amplifications and microdeletions were observed, and focal amplification of centromeric and end sequences was present, particularly in the most unstable line DU145. SKY analysis of this line identified chromosome segments fusing with multiple recipient chromosomes (jumping translocations) identifying potential dicentric sources. Telomere free end analysis indicated loss of DNA sequence. Moreover, the cell lines with the shortest telomeres had the most complex karyotypes, suggesting that despite the expression of telomerase, the reduced telomere length could be driving the observed BFB events and elevated levels of CIN in these lines.  相似文献   

8.
We consider a cell-chemotaxis model mechanism for generating some of the common, simple and complex, patterns found on the skin of snakes. By investigating the pattern generation potential of the model we show that many of the more complex patterns might result from growth of the integument during the pattern formation process. We suggest that many of the diverse elaborate patterns on snakes, and other species, can be generated by a single mechanism if the time scale of the pattern process is commensurate with the time scale associated with significant embryonic growth.  相似文献   

9.
10.
We consider a reaction-diffusion(-taxis) predator-prey system with group defense in the prey. Taxis-driven instability can occur if the group defense influences the taxis rate (Wang et al., 2017). We elaborate that this mechanism is indeed possible but biologically unlikely to be responsible for pattern formation in such a system. Conversely, we show that patterns in excitable media such as spatiotemporal Sierpinski gasket patterns occur in the reaction-diffusion model as well as in the reaction-diffusion-taxis model. If group defense leads to a dome-shaped functional response, these patterns can have a rescue effect on the predator population in an invasion scenario. Preytaxis with prey repulsion at high prey densities can intensify this mechanism leading to taxis-induced persistence. In particular, taxis can increase parameter regimes of successful invasions and decrease minimum introduction areas necessary for a successful invasion. Last, we consider the mean period of the irregular oscillations. As a result of the underlying mechanism of the patterns, this period is two orders of magnitude smaller than the period in the nonspatial system. Counter-intuitively, faster-moving predators lead to lower oscillation periods and eventually to extinction of the predator population. The study does not only provide valuable insights on theoretical spatially explicit predator-prey models with group defense but also comparisons of ecological data with model simulations.  相似文献   

11.
Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.  相似文献   

12.
Multihost vector-borne infectious diseases form a significant fraction of the global infectious disease burden. In this study we explore the relationship between host diversity, vector behavior, and disease risk. To this end, we have developed a new dynamic model which includes two distinct host species and one vector species with variable preferences. With the aid of the model we were able to compute the basic reproductive rate, R 0, a well-established measure of disease risk that serves as a threshold parameter for disease outbreak. The model analysis reveals that the system has two different qualitative behaviors: (i) the well-known dilution effect, where the maximal R0 is obtained in a community which consists a single host (ii) a new amplification effect, denoted by us as diversity amplification, where the maximal R0 is attained in a community which consists both hosts. The model analysis extends on previous results by underlining the mechanism of both, diversity amplification and the dilution, and specifies the exact conditions for their occurrence. We have found that diversity amplification occurs where the vector prefers the host with the highest transmission ability, and dilution is obtained when the vector does not show any preference, or it prefers to bite the host with the lower transmission ability. The mechanisms of dilution and diversity amplification are able to account for the different and contradictory patterns often observed in nature (i.e., in some cases disease risk is increased while in other is decreased when the diversity is increased). Implication of the diversity amplification mechanism also challenges current premises about the interaction between biodiversity, climate change, and disease risk and calls for retrospective thinking in planning intervention policies aimed at protecting the preferred host species.  相似文献   

13.
The mammalian hippocampal formation provides neuronal representations of environmental location but the underlying mechanisms are unclear. The majority of cells in medial entorhinal cortex and parasubiculum show spatially periodic firing patterns. Grid cells exhibit hexagonal symmetry and form an important subset of this more general class. Occasional changes between hexagonal and non-hexagonal firing patterns imply a common underlying mechanism. Importantly, the symmetrical properties are strongly affected by the geometry of the environment. Here, we introduce a field–boundary interaction model where we demonstrate that the grid cell pattern can be formed from competing place-like and boundary inputs. We show that the modelling results can accurately capture our current experimental observations.  相似文献   

14.
Gene amplification, a key mechanism for oncogene activation and drug resistance in tumour cells, involves the generation and joining of DNA double-strand breaks. Amplified DNA can be carried either on intra-chromosomal arrays or on extra-chromosomal elements (double minutes). We previously showed that, in rodent cells deficient in DNA-PKcs, intra-chromosomal amplification is significantly enhanced. In the present work, we studied gene amplification in human HeLa cell lines in which the expression of the DNA-PKcs gene was constitutively inhibited by shRNAs. These cell lines showed an increased sensitivity to ionizing radiations, an enhanced frequency of chromosomal aberrations and an increased rate of occurrence of methotrexate resistant colonies compared to the control cell lines (6-18 times). The main mechanism of resistance to methotrexate was extra-chromosomal amplification of the dihydrofolate reductase gene. These results indicate that, in human cells, inhibition of DNA-PKcs gene expression favours gene amplification occurring via the production of double minutes. In addition, they show that cell lines constitutively expressing shRNAs are good model systems to study the role of specific functions in gene amplification.  相似文献   

15.
Biofeedback in the treatment of headache and other childhood pain   总被引:4,自引:0,他引:4  
Since the first biofeedback (BFB) studies on pediatric pain were published in the early 1980s, most of the studies have focused on the treatment of pediatric migraine. More recently, BFB has also been evaluated in the treatment of tension headache in children. Not surprisingly, most of what we know about the efficacy and mechanisms of BFB in the treatment of children's pain problems concerns the treatment of childhood headache (HA). In this review, we provide a detailed summary of studies that have evaluated BFB in the treatment of childhood HAs with an emphasis on treatment outcome and maintenance of treatment success. Moreover, findings and hypotheses with regard to the mechanisms that may mediate the treatment effects of BFB are addressed. Finally, we discuss specific issues relating to the treatment of pain in children with BFB and outline future directions of research.  相似文献   

16.
17.
It has been suggested that numerosity is an elementary quality of perception, similar to colour. If so (and despite considerable investigation), its mechanism remains unknown. Here, we show that observers require on average a massive difference of approximately 40% to detect a change in the number of objects that vary irrelevantly in blur, contrast and spatial separation, and that some naive observers require even more than this. We suggest that relative numerosity is a type of texture discrimination and that a simple model computing the contrast energy at fine spatial scales in the image can perform at least as well as human observers. Like some human observers, this mechanism finds it harder to discriminate relative numerosity in two patterns with different degrees of blur, but it still outpaces the human. We propose energy discrimination as a benchmark model against which more complex models and new data can be tested.  相似文献   

18.
The surface of bogs commonly shows various spatial vegetation patterning. Typical are "string patterns" consisting of regular densely vegetated bands oriented perpendicular to the slope. Here, we report on regular "maze patterns" on flat ground, consisting of bands densely vegetated by vascular plants in a more sparsely vegetated matrix of nonvascular plant communities. We present a model reproducing these maze and string patterns, describing how nutrient-limited vascular plants are controlled by, and in turn control, both hydrology and solute transport. We propose that the patterns are self-organized and originate from a nutrient accumulation mechanism. In the model, this is caused by the convective transport of nutrients in the groundwater toward areas with higher vascular plant biomass, driven by differences in transpiration rate. In a numerical bifurcation analysis we show how the maze patterns originate from the spatially homogeneous equilibrium and how this is affected by changes in rainfall, nutrient input, and plant properties. Our results confirm earlier model results, showing that redistribution of a limiting resource may lead to fine-scale facilitative and coarse-scale competitive plant interactions in different ecosystems. Self-organization in ecosystems may be a more general phenomenon than previously thought, which can be mechanistically linked to scale-dependent facilitation and competition.  相似文献   

19.
In this paper, we employ the novel application of a reaction-diffusion model on a growing domain to examine growth patterns of the ligaments of arcoid bivalves (marine molluscs) using realistic growth functions. Solving the equations via a novel use of the finite element method on a moving mesh, we show how a reaction-diffusion model can mimic a number of different ligament growth patterns with modest changes in the parameters. Our results imply the existence of a common mode of ligament pattern formation throughout the Arcoida. Consequently, arcoids that share a particular pattern cannot be assumed, on this basis alone, to share an immediate common ancestry. Strikingly different patterns within the set can easily be generated by the same developmental program. We further show how the model can be used to make quantitatively testable predictions with biological implications.  相似文献   

20.
Summary In this paper we show how an Artificial Immune System can be used to study pattern recognition processes and learning. In particular we show the ability of the model to discover and maintain coverage of the diverse patterns through mechanism of evolution and mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号