首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

2.
Members of the hect domain protein family are characterized by sequence similarity of their C-terminal regions to the C terminus of E6-AP, an E3 ubiquitin-protein ligase. An essential intermediate step in E6-AP-dependent ubiquitination is the formation of a thioester complex between E6-AP and ubiquitin in the presence of distinct E2 ubiquitin-conjugating enzymes including human UbcH5, a member of the UBC4/UBC5 subfamily of E2s. Similarly, several hect domain proteins, including Saccharomyces cerevisiae RSP5, form ubiquitin thioester complexes, indicating that hect domain proteins in general have E3 activity. We show here, by the use of chimeric E2s generated between UbcH5 and other E2s, that a region of UbcH5 encompassing the catalytic site cysteine residue is critical for its ability to interact with E6-AP and RSP5. Of particular importance is a phenylalanine residue at position 62 of UbcH5 that is conserved among the members of the UBC4/UBC5 subfamily but is not present in any of the other known E2s, whereas the N-terminal 60 amino acids do not contribute significantly to the specificity of these interactions. The conservation of this phenylalanine residue throughout evolution underlines the importance of the ability to interact with hect domain proteins for the cellular function of UBC4/UBC5 subfamily members.  相似文献   

3.
4.
5.
Rice, a monocot model crop, contains at least 48 putative E2 ubiquitin (Ub)-conjugating enzymes. Based on homology comparisons with 40 Arabidopsis E2 proteins and 35 human E2s, 48 rice E2s were classified into 15 different groups. Yeast two-hybrid analyses using the U-box-domain regions of armadillo (ARM)-U-box E3 Ub-ligases and the Ub-conjugating (UBC) domains of E2s showed that, among 40 rice E2s, 11 E2s accounted for 70% of the interactions with 17 ARM-U-box E3s. Thus, a single E2 could interact with multiple ARM-U-box E3s, suggesting the presence of E2 hubs for E2–E3 interactions in rice. Rice SPL11 ARM-U-box E3 displayed distinct self-ubiquitination patterns, including poly-ubiquitination, mono-ubiquitination, or no ubiquitination, depending on different E2 partners. This suggests that the mode of ubiquitination of SPL11 E3 is critically influenced by individual E2s.  相似文献   

6.
Most of the B-cell lymphoma-2 (Bcl-2) protein structure has been elucidated; however, the conformation of its flexible loop domain (FLD) has not yet been experimentally predicted. Its high flexibility under physiological conditions is the reason. FLD behaves as an intrinsically disordered region (IDR) and can adopt regular structures in particular conditions associated with the control of Bcl-2’s anti-apoptotic functions. In a previous contribution, we analyzed an engineered Bcl-2 construct (Bcl-2-Δ22Σ3) submitted to 25-ns MD and reported a disordered-to-helix transitions in a region of FLD (rFLD, residues 60–77). However, the conformational preferences in solution of rFLD in the nanosecond to microsecond scale were not analyzed. Herein, an average model was obtained for the native Bcl-2 protein by homology modeling and MD simulation techniques. From this, only the atomic coordinates corresponding to the rFLD were simulated for 1 μs by MD at 310 K. In concordance with previous studies, a disordered-to-helix transitions were exhibited, implying that this “interconversion of folding” in the rFLD suggest a possible set of conformations encoded in its sequence. Principal component analysis (PCA) showed that most of the conformational fluctuation of Bcl-2 is provided by rFLD. Dihedral PCA (dPCA) offered information about all the conformations of rFLD in the μs of the simulation, characterizing a dPCA-based free energy landscape of rFLD, and a conformational ensemble of fast interconverting conformations as other IDRs. Furthermore, despite the conformational heterogeneity of rFLD, the analysis of the dihedral angles (Φ, Ψ) showed that this region does not randomly explore the conformational space in solution.
Graphical Abstract Emergence of the Bcl-2-rFLD’s structural heterogeneity in solution, evidenced by molecular dynamics simulation.
  相似文献   

7.
TolB and Pal are members of the Tol-Pal system that spans the cell envelope of Gram-negative bacteria and contributes to the stability and integrity of the bacterial outer membrane (OM). Lipoylated Pal is tethered to the OM and binds the β-propeller domain of periplasmic TolB, which, as recent evidence suggests, disengages TolB from its interaction with other components of the Tol system in the inner membrane. Antibacterial nuclease colicins such as colicin E9 (ColE9) also bind the β-propeller domain of TolB in order to catalyze their translocation across the bacterial OM. In contrast to Pal, however, colicin binding to TolB promotes its interaction with other components of the Tol system. Here, through a series of pre-steady-state kinetic experiments utilizing fluorescence resonance energy transfer pairs within the individual protein-protein complexes, we establish the kinetic basis for such 'competitive recruitment' by the TolB-binding epitope (TBE) of ColE9. Surprisingly, the 16-residue disordered ColE9 TBE associates more rapidly with TolB than Pal, a folded 13-kDa protein. Moreover, we demonstrate that calcium ions, which bind within the confines of the TolB β-propeller domain tunnel and are known to increase the affinity of the TolB-ColE9 complex, do not exert their influence through long-range electrostatic effects, as had been predicted, but through short-range effects that slow the dissociation rate of ColE9 TBE from its complex with TolB. Our study demonstrates that an intrinsically disordered protein undergoing binding-induced folding can compete effectively with a globular protein for a common target by associating more rapidly than the globular protein.  相似文献   

8.
IDPs in their unbound state can transiently acquire secondary and tertiary structure. Describing such intrinsic structure is important to understand the transition between free and bound state, leading to supramolecular complexes with physiological interactors. IDP structure is highly dynamic and, therefore, difficult to study by conventional techniques. This work focuses on conformational analysis of the KID fragment of the Sic1 protein, an IDP with a key regulatory role in the cell-cycle of Saccharomyces cerevisiae. FT-IR spectroscopy, ESI-MS, and IM measurements are used to capture dynamic and short-lived conformational states, probing both secondary and tertiary protein structure. The results indicate that the isolated Sic1 KID retains dynamic helical structure and populates collapsed states of different compactness. A metastable, highly compact species is detected. Comparison between the fragment and the full-length protein suggests that chain length is crucial to the stabilization of compact states of this IDP. The two proteins are compared by a length-independent compaction index.  相似文献   

9.
Neuroligins act as heterophilic adhesion molecules at neuronal synapses. Their cytoplasmic domains interact with synaptic scaffolding proteins, and have been shown to be intrinsically disordered. Here we report the backbone and side chain 1H, 13C and 15N resonance assignments for the cytoplasmic domain of human neuroligin 3.  相似文献   

10.
11.
《FEBS letters》2014,588(9):1839-1849
The RelA/SpoT enzyme produces (p)ppGpp that helps the bacterium survive during stress. The domains present in it are interspersed with connecting linkers whose functions have been poorly elucidated. We rationally analyzed the sequence and structural property of the regulatory C-terminal region in the Rel family of proteins and report the presence of an intrinsically disordered region between two successive domains in this region that are separated by a defined amino acid sequence length. We show that the length and secondary structure of this linker are conserved in Rel proteins, further signifying its importance in rendering flexibility for domain movement and domain–domain interaction.  相似文献   

12.
13.
Interferon (IFN)-alpha is a cytokine with antiviral, antiproliferative, and immunomodulatory properties, the functions of which are mediated via IFN-induced protein products. We used metabolic labeling and two-dimensional gel electrophoresis followed by MS and database searches to identify potentially new IFN-alpha-induced proteins in human T cells. By this analysis, we showed that IFN-alpha induces the expression of ubiquitin cross-reactive protein (ISG15) and two ubiquitin-conjugating enzymes, UbcH5 and UbcH8. Northern-blot analysis showed that IFN-alpha rapidly enhances mRNA expression of UbcH5, UbcH6 and UbcH8 in T cells. In addition, these genes were induced in macrophages in response to IFN-alpha or IFN-gamma stimulation or influenza A or Sendai virus infections. Similarly, IFNs enhanced UbcH8 mRNA expression in A549 lung epithelial cells, HepG2 hepatoma cells, and NK-92 cells. Cycloheximide, a protein synthesis inhibitor, did not block IFN-induced upregulation of UbcH8 mRNA expression, suggesting that UbcH8 is the primary target gene for IFN-alpha and IFN-gamma. Ubiquitin conjugation is a rate-limiting step in antigen presentation and therefore the upregulation of UbcHs by IFNs may contribute to the enhanced antigen presentation by macrophages. Our results show that proteome analysis of cells is a suitable method for identifying previously unrecognized cytokine-inducible genes.  相似文献   

14.
The 61-kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins and kills them by hydrolyzing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies [Collins et al. (2002) J. Mol. Biol. 318, 787-904; MacDonald et al. (2004), J. Biomol. NMR 30, 81-96] have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is intrinsically disordered and contains clusters of interacting side chains. To further define the properties of this region of colicin E9, we have investigated the effects on the dynamical and TolB-binding properties of three mutations of colicin E9 that inactivate it as a toxin. The mutations were contained in a fusion protein consisting of residues 1-61 of colicin E9 connected to the N terminus of the E9 DNase by an eight-residue linking sequence. The NMR data reveals that the mutations cause major alterations to the properties of some of the clusters, consistent with some form of association between them and other more distant parts of the amino acid sequence, particularly toward the N terminus of the protein. However, (15)N T(2) measurements indicates that residues 5-13 of the fusion protein bound to the 43-kDa TolB remain as flexible as they are in the free protein. The NMR data point to considerable dynamic ordering within the intrinsically disordered translocation domain of the colicin that is important for creating the TolB-binding site. Furthermore, amino acid sequence considerations suggest that the clusters of amino acids occur because of the size and polarities of the side chains forming them influenced by the propensities of the residues within the clusters and those immediately surrounding them in sequence space to form beta turns.  相似文献   

15.
16.
The p53 transactivation domain (p53TAD) is an intrinsically disordered protein (IDP) domain that undergoes coupled folding and binding when interacting with partner proteins like the E3 ligase, MDM2, and the 70 kDa subunit of replication protein A, RPA70. The secondary structure and dynamics of six closely related mammalian homologues of p53TAD were investigated using nuclear magnetic resonance (NMR) spectroscopy. Differences in both transient secondary structure and backbone dynamics were observed for the homologues. Many of these differences were localized to the binding sites for MDM2 and RPA70. The amount of transient helical secondary structure observed for the MDM2 binding site was lower for the dog and mouse homologues, compared with human, and the amount of transient helical secondary structure observed for the RPA70 binding site was higher for guinea pig and rabbit, compared with human. Differences in the amount of transient helical secondary structure observed for the MDM2 binding site were directly related to amino acid substitutions occurring on the solvent exposed side of the amphipathic helix that forms during the p53TAD/MDM2 interaction. Differences in the amount of transient helical secondary structure were not as easily explained for the RPA70 binding site because of its extensive sequence divergence. Clustering analysis shows that the divergence in the transient secondary structure of the p53TAD homologues exceeds the amino acid sequence divergence. In contrast, strong correlations were observed between the backbone dynamics of the homologues and the sequence identity matrix, suggesting that the dynamic behavior of IDPs is a conserved evolutionary feature. Proteins 2013; 81:1686–1698. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Two novel cDNAs, Plubc1 and Plubc2, encoding ubiquitin-conjugatingenzyme E2, were isolated from a Pavlova lutheri cDNA library. They areeach encoded by single copy genes in thealgae genome. Sequence comparison withplant, yeast and algal E2 sequences showedthat PlUBC1 and PlUBC2 are members of newE2 subfamilies. Time-course expressionanalysis of the two cDNAs revealed thatPlubc1 is transitionallyover-expressed at the end of theexponential phase of growth of the culture,while Plubc2 is constitutivelyexpressed at the same level throughout thecell growth. The phylogenetic study and thedifferent expression patterns suggest thatthese two enzymes could exhibit differentphysiological functions in P. lutheri.The partial sequence of the 18S rRNA geneand the full-length cDNA sequence of Plubc1 and Plubc2 reported in thispaper will appear in the Genbank databaseunder the accession numbers AY135218,AY135219 and AY135220 respectively.  相似文献   

18.
19.
The x-ray crystal structure of a recombinant ubiquitin-conjugating enzyme (E2) encoded by the UBC1 gene of the plant Arabidopsis thaliana has been determined with the use of multiple isomorphous replacement techniques and refined at 2.4-A resolution by simulated annealing and restrained least-squares. This E2 is an alpha/beta protein, with four alpha-helices and a four-stranded antiparallel beta-sheet. The NH2 and COOH termini, which may be important for interaction with other enzymes and substrates in the ubiquitin-conjugation pathway, are on the opposite side of the molecule from the cysteine residue that binds to the COOH terminus of ubiquitin. This structure should now allow for the rational analysis of E2 function by in vitro mutagenesis and facilitate the effective design of E2s with unique specificities or catalytic functions.  相似文献   

20.
Ubiquitin and other ubiquitin-like proteins play important roles in post-translational modification. They are phylogenetically well-conserved in eukaryotes. Here we report a new ubiquitin-conjugating enzyme E2 cDNA, which containing a ubiquitin-conjugating enzyme UBCc-domain named UBE2AM. Its cDNA is 899 base pairs in length and contains an open reading frame from nucleotide 171 to 632 encoding 153 amino acids. The result of real time RT-PCR showed that UBEA2 M is expressed in most of M. expansa proglottides and over-expressed in the mature proglottides. Comparison of predicted UBE2AM with UBCc (protein) homologues/orthologous from other species revealed identities between species varying from 97.5 to 99.4% at the amino acid level. Phylogenetic analysis showed the UBE2AM is a member of the eukaryotic UBCc superfamily, which have diverged from a common ancestor and the gene is clustered in the same group with the ubiquitin-conjugating enzyme E2A-like protein from Taenia asiatica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号