首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Malaria parasites are unusual, early-diverging protozoans with non-canonical cell cycles. They do not undergo binary fission, but divide primarily by schizogony. This involves the asynchronous production of multiple nuclei within the same cytoplasm, culminating in a single mass cytokinesis event. The rate and efficiency of parasite reproduction is fundamentally important to malarial disease, which tends to be severe in hosts with high parasite loads. Here, we have studied for the first time the dynamics of schizogony in two human malaria parasite species, Plasmodium falciparum and Plasmodium knowlesi. These differ in their cell-cycle length, the number of progeny produced and the genome composition, among other factors. Comparing them could therefore yield new information about the parameters and limitations of schizogony. We report that the dynamics of schizogony differ significantly between these two species, most strikingly in the gap phases between successive nuclear multiplications, which are longer in P. falciparum and shorter, but more heterogenous, in P. knowlesi. In both species, gaps become longer as schizogony progresses, whereas each period of active DNA replication grows shorter. In both species there is also extreme variability between individual cells, with some schizonts producing many more nuclei than others, and some individual nuclei arresting their DNA replication for many hours while adjacent nuclei continue to replicate. The efficiency of schizogony is probably influenced by a complex set of factors in both the parasite and its host cell.  相似文献   

2.
Five ornithine decarboxylase inhibitors: alpha-difluoromethylornithine (DFMO) (eflornithine); alpha-monofluoromethyl-3,4-dehydroornithine; alpha-monofluoromethyl-3,4-dehydroornithine methyl ester; alpha-monofluoromethyl-3,4-dehydroornithine ethyl ester; and (2R,5R)-delta-methyl-alpha-acetylenic putrescine were shown to inhibit erythrocytic schizogony of Plasmodium falciparum in vitro and reduced spermidine levels in infected erthrocytes. Only DFMO was effective at limiting erythrocytic schizogony of P. berghei in vivo. Administration of DFMO as a 2% solution in the drinking water for 4 days reduced parasitemia in mice by 50% in a 4-day suppression test but did not increase survival time of infected mice. This is the first demonstration of an effect of DFMO on plasmodial erythrocytic schizogony in vivo and suggests that interference with polyamine biosynthesis may, in fact, be a viable chemotherapeutic target in erythrocytic malaria.  相似文献   

3.
Aurora kinases compose a family of conserved Ser/Thr protein kinases playing essential roles in eukaryotic cell division. To date, Aurora homologues remain uncharacterized in the protozoan phylum Apicomplexa. In malaria parasites, the characterization of Aurora kinases may help understand the cell cycle control during erythrocytic schizogony where asynchronous nuclear divisions occur. In this study, we revisited the kinome of Plasmodium falciparum and identified three Aurora-related kinases, Pfark-1, -2, -3. Among these, Pfark-1 is highly conserved in malaria parasites and also appears to be conserved across Apicomplexa. By tagging the endogenous Pfark-1 gene with the green fluorescent protein (GFP) in live parasites, we show that the Pfark-1-GFP protein forms paired dots associated with only a subset of nuclei within individual schizonts. Immunofluorescence analysis using an anti-α-tubulin antibody strongly suggests a recruitment of Pfark-1 at duplicated spindle pole bodies at the entry of the M phase of the cell cycle. Unsuccessful attempts at disrupting the Pfark-1 gene with a knockout construct further indicate that Pfark-1 is required for parasite growth in red blood cells. Our study provides new insights into the cell cycle control of malaria parasites and reports the importance of Aurora kinases as potential targets for new antimalarials.  相似文献   

4.
5.
6.
《Cell reports》2023,42(4):112251
  1. Download : Download high-res image (237KB)
  2. Download : Download full-size image
  相似文献   

7.
8.
PfPK7 is an orphan protein kinase of Plasmodium falciparum with maximal homology to MEK3/6 and to fungal protein kinase A proteins in its C-terminal and N-terminal regions, respectively. We showed previously that recombinant PfPK7 is active on various substrates but is unable to phosphorylate the Plasmodium falciparum mitogen-activated protein kinase homologues, suggesting that it is not a MEK functional homologue. Using a reverse genetics approach to investigate the function of this enzyme in live parasites, we now show that PfPK7 parasite clones display phenotypes at two stages of their life cycle: first, a decrease in the rate of asexual growth in erythrocytes associated with a lower number of daughter merozoites generated per schizont, and second, a dramatic reduction in the ability to produce oocysts in the mosquito vector. A normal asexual growth rate and the ability to produce oocysts are restored if a functional copy of the PfPK7 gene is reintroduced into the PfPK7 parasites. Hence, PfPK7 is involved in a pathway that regulates parasite proliferation and development.  相似文献   

9.
The development of an electroporation based transfection method for Plasmodium falciparum has been very successful for the study of some genes but its efficiency remains very low. While alternative approaches have been documented, electroporation of infected red blood cells generally remains the method of choice for introducing DNA into P. falciparum. In this paper we compare four published transfection techniques in their ability to achieve stable transfections.  相似文献   

10.
BACKGROUND: The development of Plasmodium falciparum within human erythrocytes induces a wide array of changes in the ultrastructure, function and antigenic properties of the host cell. Numerous proteins encoded by the parasite have been shown to interact with the erythrocyte membrane. The identification of new interactions between human erythrocyte and P. falciparum proteins has formed a key area of malaria research. To circumvent the difficulties provided by conventional protein techniques, a novel application of the phage display technology was utilised. METHODS: P. falciparum phage display libraries were created and biopanned against purified erythrocyte membrane proteins. The identification of interacting and in-frame amino acid sequences was achieved by sequencing parasite cDNA inserts and performing bioinformatic analyses in the PlasmoDB database. RESULTS: Following four rounds of biopanning, sequencing and bioinformatic investigations, seven P. falciparum proteins with significant binding specificity toward human erythrocyte spectrin and protein 4.1 were identified. The specificity of these P. falciparum proteins were demonstrated by the marked enrichment of the respective in-frame binding sequences from a fourth round phage display library. CONCLUSION: The construction and biopanning of P. falciparum phage display expression libraries provide a novel approach for the identification of new interactions between the parasite and the erythrocyte membrane.  相似文献   

11.
The cell cycle of Plasmodium is unique among major eukaryotic cell cycle models. Cyclin-dependent kinases (CDKs) are thought to be the key molecular switches that regulate cell cycle progression in the parasite. However, little information is available about Plasmodium CDKs. The present study was performed to investigate the effects of a CDK inhibitor, olomoucine, on the erythrocytic growth of Plasmodium falciparum. This agent inhibited the growth of the parasite at the trophozoite/schizont stage. Furthermore, we characterized the Plasmodium CDK homolog, P. falciparum cdc2-related kinase-1 (Pfcrk-1), which is a potential target of olomoucine. We synthesized a functional kinase domain of Pfcrk-1 as a GST fusion protein using a wheat germ protein expression system, and examined its phosphorylation activity. The activity of this catalytic domain was higher than that of GST-GFP control, but the same as that of a kinase-negative mutant of Pfcrk-1. After the phosphatase treatment, the labeling of [γ-32P]ATP was abolished. Recombinant human cyclin proteins were added to these kinase reactions, but there were no differences in activity. This report provides important information for the future investigation of Plasmodium CDKs.  相似文献   

12.
MOTIVATION: More and more often, a gene is epitomized by a large number of sequences in GenBank. This high redundancy makes it very difficult to identify a unique best match for a query sequence from its BLAST results. We developed a novel program UniBLAST that filters out uninformative hits, clusters the redundant hits, groups the hits by LocusLink, and graphically displays the results. We also implemented a scoring function in UniBLAST to assign a unique gene name to a query sequence. UniBLAST significantly increases the efficiency of gene annotation. AVAILABILITY: The program is available at http://south.genomics.org.cn/software/uniblast/index.html CONTACT: uniblast@genomics.org.cn; wei@nexusgenomics.com  相似文献   

13.
14.
The survival of malaria parasites in human RBCs (red blood cells) depends on the pentose phosphate pathway, both in Plasmodium falciparum and its human host. G6PD (glucose-6-phosphate dehydrogenase) deficiency, the most common human enzyme deficiency, leads to a lack of NADPH in erythrocytes, and protects from malaria. In P. falciparum, G6PD is combined with the second enzyme of the pentose phosphate pathway to create a unique bifunctional enzyme named GluPho (glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase). In the present paper, we report for the first time the cloning, heterologous overexpression, purification and kinetic characterization of both enzymatic activities of full-length PfGluPho (P. falciparum GluPho), and demonstrate striking structural and functional differences with the human enzymes. Detailed kinetic analyses indicate that PfGluPho functions on the basis of a rapid equilibrium random Bi Bi mechanism, where the binding of the second substrate depends on the first substrate. We furthermore show that PfGluPho is inhibited by S-glutathionylation. The availability of recombinant PfGluPho and the major differences to hG6PD (human G6PD) facilitate studies on PfGluPho as an excellent drug target candidate in the search for new antimalarial drugs.  相似文献   

15.
During infection, Plasmodium spp. require reducing equivalents such as NADPH to support the function of specific enzymes in overcoming oxidative stress. The catalysis of isocitrate by the NADP-dependent isocitrate dehydrogenase of Plasmodium falciparum (pfICDH) generates NADPH and is thus crucial for the parasite's survival and pathogenecity. In this study, pfICDH was cloned from a clinical isolate of P. falciparum. This was facilitated by designing primers based on the P. falciparum genome sequence resource PlasmoDB. DNA sequence of the cloned gene revealed an ORF that encodes a protein of 468 aa. Furthermore, after expression in Esherichia coli BL21, enzyme assays of cell-free extracts confirmed the overexpression and function of pfICDH. Further, pfICDH purified by affinity chromatography retained its enzyme activity. Substitution of NADP for NAD, or the use of EDTA, in enzyme assays abolished pfICDH activity. ATP and chloroquine, as well as cupric and argentic ions, inhibited pfICDH activity. Phylogenetic analysis revealed high primary structure homology (45-97%) among genes coding for eukaryal NADP-dependent ICDH, and the occurrence of three subfamilies of ICDH genes. Interestingly, there were significant sequence dissimilarities between pfICDH and its mammalian or bacterial homologs, particularly at the N- and C-termini. Confirming the functionality of the cloned pfICDH, and asserting its distance from the human homolog by molecular definitions, are important prerequisites for promoting this gene as a drug target screen.  相似文献   

16.
17.
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.  相似文献   

18.
19.
A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.  相似文献   

20.
The post-translational farnesylation of proteins serves to anchor a subset of intracellular proteins to membranes in eukaryotic organisms and also promotes protein-protein interactions. Inhibition of protein farnesyltransferase (PFT) is lethal to the pathogenic protozoa Plasmodium falciparum. Parasites were isolated that were resistant to BMS-388891, a tetrahydroquinoline (THQ) PFT inhibitor. Resistance was associated with a 12-fold decrease in drug susceptibility. Genotypic analysis revealed a single point mutation in the beta subunit in resistant parasites. The resultant tyrosine 837 to cysteine alteration in the beta subunit corresponded to the binding site for the THQ and peptide substrate. Biochemical analysis of Y837C-PFT demonstrated a 13-fold increase in BMS-388891 concentration necessary for inhibiting 50% of the enzyme activity. These data are consistent with PFT as the target of BMS-388891 in P. falciparum and suggest that PFT inhibitors should be combined with other antimalarial agents for effective therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号