共查询到20条相似文献,搜索用时 15 毫秒
1.
Excitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain. Peptides corresponding to Trisk 95 residues 200-232 or 200-231 bound to RyR1 and increased the single channel activity of RyR1 by 1.49±0.11-fold and 1.8±0.15-fold respectively, when added to its luminal side. A similar increase in [(3)H]ryanodine binding, which reflects open probability of the channels, was also observed. This RyR1 activation is similar to activation induced by full length Trisk 95. Circular dichroism showed that both peptides were intrinsically disordered, suggesting a defined secondary structure is not necessary to mediate RyR1 activation. These data for the first time demonstrate that Trisk 95's 200-231 region is responsible for RyR1 activation. Furthermore, it shows that no secondary structure is required to achieve this activation, the Trisk 95 residues themselves are critical for the Trisk 95-RyR1 interaction. 相似文献
2.
The 95 kDa transmembrane glycoprotein triadin is believed to be an essential component of excitation-contraction coupling in the junctional sarcoplasmic reticulum of skeletal muscle fibers. It is debatable whether triadin mediates intraluminal interactions between calsequestrin and the ryanodine receptor exclusively or whether this junctional protein provides also a cytoplasmic linkage between the Ca2+-release channel and the dihydropyridine receptor. Here, we could show that native triadin exists as disulfide-linked homo-polymers of above 3000 kDa. Under non-reducing conditions, protein bands representing the alpha1-dihydropyridine receptor and calsequestrin did not show an immunodecorative overlap with the extremely high-molecular-mass triadin clusters. Following chemical crosslinking, the ryanodine receptor and triadin exhibited a similarly decreased electrophoretic mobility. However, immunoblotting of diagonal non-reducing/reducing two-dimensional gels clearly demonstrated a lack of overlap between the immunodecorated bands representing triadin, the alpha1-dihydropyridine receptor, the ryanodine receptor and calsequestrin. Thus, in native membranes triadin appears to form large self-aggregates primarily. Although triadin exists in a close neighborhood relationship to the Ca2+-release channel tetramers, it does not seem to be directly linked to the other main triad components implicated in the regulation of the excitation-contraction-relaxation cycle and Ca2+-homeostasis. This agrees with a proposed role of triadin in the maintenance of overall triad architecture. 相似文献
3.
Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters 总被引:3,自引:0,他引:3
We have examined the influence of different sterols and phospholipids on the activities of the cardiac sarcolemmal Na+-Ca2+ exchanger and Na+,K+-ATPase and the sarcoplasmic reticular Ca2+-ATPase in reconstituted proteoliposomes. When either the solubilized Na+-Ca2+ exchanger or the Na+,K+-ATPase is reconstituted into phosphatidylcholine (PC):phosphatidylserine (30:50 by weight) vesicles, high cholesterol levels (20% by weight) are required for activity to be expressed. This sterol requirement is highly specific for cholesterol. Several cholesterol analogues with minor structural changes are unable to support Na+-Ca2+ exchange or Na+,K+-ATPase activities. When solubilized sarcolemma is reconstituted into PC:cardiolipin vesicles, however, the requirement for cholesterol is lost. Substantial activity can be obtained in the complete absence of cholesterol or in the presence of several cholesterol analogues. Thus, sterol/protein interactions can be highly dependent on the phospholipid environment. In contrast, the skeletal muscle sarcoplasmic reticular Ca2+-ATPase functions equally well in the presence or absence of cholesterol after reconstitution into either PC:phosphatidylserine or PC:cardiolipin proteoliposomes. Phospholipid requirements of the transporters were also examined. The sarcolemmal Na+-Ca2+ exchanger, Na+,K+-ATPase, and the sarcoplasmic reticular Ca2+-ATPase all function optimally in the presence of phosphatidylserine or cardiolipin after reconstitution. Thus, the sarcolemmal cation transporters have similar sterol and phospholipid requirements and may have structural similarities in their hydrophobic regions. The sarcoplasmic reticular Ca2+ pump evolved in a low cholesterol membrane and has different lipid interactions. These findings may have general applicability to other plasma membrane and endoplasmic reticular enzymes. 相似文献
4.
DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate), an anion channel blocker, triggers Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). The present study characterized the effects of DIDS on rabbit skeletal single Ca2+-release channel/RyR1 (ryanodine receptor type 1) incorporated into a planar lipid bilayer. When junctional SR vesicles were used for channel incorporation (native RyR1), DIDS increased the mean P(o) (open probability) of RyR1 without affecting unitary conductance when Cs+ was used as the charge carrier. Lifetime analysis of single RyR1 activities showed that 10 microM DIDS induced reversible long-lived open events (P(o)=0.451+/-0.038) in the presence of 10 microM Ca2+, due mainly to a new third component for both open and closed time constants. However, when purified RyR1 was examined in the same condition, 10 microM DIDS became considerably less potent (P(o)=0.206+/-0.025), although the caffeine response was similar between native and purified RyR1. Hence we postulated that a DIDS-binding protein, essential for the DIDS sensitivity of RyR1, was lost during RyR1 purification. DIDS-affinity column chromatography of solubilized junctional SR, and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analysis of the affinity-column-associated proteins, identified four major DIDS-binding proteins in the SR fraction. Among them, aldolase was the only protein that greatly potentiated DIDS sensitivity. The association between RyR1 and aldolase was further confirmed by co-immunoprecipitation and aldolase-affinity batch-column chromatography. Taken together, we conclude that aldolase is physically associated with RyR1 and could confer a considerable potentiation of the DIDS effect on RyR1. 相似文献
5.
Using solubilization/reconstitution techniques, we have investigated the influence of membrane fatty acyl composition on the activities of sarcolemmal and sarcoplasmic reticular transporters. The sarcolemmal Na(+)-Ca2+ exchanger and Na+, K(+)-ATPase and the sarcoplasmic reticular Ca2(+)-ATPase were reconstituted into phosphatidylcholine:phosphatidylserine:cholesterol (30:50:20% by weight) proteoliposomes of defined fatty acyl composition. Transport activities varied considerably with phospholipid fatty acyl composition. Quite strikingly, the dependence on membrane fatty acyl composition for all three transporters was identical. 相似文献
6.
J R Mickelson E M Gallant L A Litterer K M Johnson W E Rempel C F Louis 《The Journal of biological chemistry》1988,263(19):9310-9315
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle. 相似文献
7.
Evidence for functional interactions between the Ca2+ release channel in the skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) and the L-type Ca2+ channel in the sarcolemma (the dihydropyridine receptor), leading to excitation-contraction coupling, is reviewed and experimental systems used to identify candidate sites of interaction are outlined. 相似文献
8.
Groh S Marty I Ottolia M Prestipino G Chapel A Villaz M Ronjat M 《The Journal of biological chemistry》1999,274(18):12278-12283
Triadin has been shown to co-localize with the ryanodine receptor in the sarcoplasmic reticulum membrane. We show that immunoprecipitation of solubilized sarcoplasmic reticulum membrane with antibodies directed against triadin or ryanodine receptor, leads to the co-immunoprecipitation of ryanodine receptor and triadin. We then investigated the functional importance of the cytoplasmic domain of triadin (residues 1-47) in the control of Ca2+ release from sarcoplasmic reticulum. We show that antibodies directed against a synthetic peptide encompassing residues 2-17, induce a decrease in the rate of Ca2+ release from sarcoplasmic reticulum vesicles as well as a decrease in the open probability of the ryanodine receptor Ca2+ channel incorporated in lipid bilayers. Using surface plasmon resonance spectroscopy, we defined a discrete domain (residues 18-46) of the cytoplasmic part of triadin interacting with the purified ryanodine receptor. This interaction is optimal at low Ca2+ concentration (up to pCa 5) and inhibited by increasing calcium concentration (IC50 of 300 microM). The direct molecular interaction of this triadin domain with the ryanodine receptor was confirmed by overlay assay and shown to induce the inhibition of the Ca2+ channel activity of purified RyR in bilayer. We propose that this interaction plays a critical role in the control, by triadin, of the Ca2+ channel behavior of the ryanodine receptor and therefore may represent an important step in the regulation process of excitation-contraction coupling in skeletal muscle. 相似文献
9.
Colocalization of dihydropyridine and ryanodine receptors in neonate rabbit heart using confocal microscopy 总被引:1,自引:0,他引:1
Sedarat F Xu L Moore ED Tibbits GF 《American journal of physiology. Heart and circulatory physiology》2000,279(1):H202-H209
Because of undeveloped T tubules and sparse sarcoplasmic reticulum, Ca(2+)-induced Ca(2+) release (CICR) may not be the major mechanism providing contractile Ca(2+) in the neonatal heart. Spatial association of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), a key factor for CICR, was examined in isolated neonatal rabbit ventricular myocytes aged 3-20 days by double-labeling immunofluorescence and confocal microscopy. We found a significant increase (P < 0.0005) in the degree of colocalization of DHPR and RyR during development. The number of voxels containing DHPR that also contained RyR in the 3-day-old group (62 +/- 1.8%) was significantly lower than in the other age groups (76 +/- 1.3 in 6-day old, 75 +/- 1.2 in 10-day old, and 79 +/- 0.9% in 20-day old). The number of voxels containing RyR that also contained DHPR was significantly higher in the 20-day-old group (17 +/- 0.5%) compared with the other age groups (10 +/- 0.7 in 3-day old, 11 +/- 0.6 in 6-day old, and 11 +/- 0.5% in 10-day old). During this period, the pattern of colocalization changed from mostly peripheral to mostly internal couplings. Our results provide a structural basis for the diminished prominence of CICR in neonatal heart. 相似文献
10.
Purified ryanodine receptor from rabbit skeletal muscle is the calcium- release channel of sarcoplasmic reticulum 总被引:36,自引:10,他引:36 下载免费PDF全文
J S Smith T Imagawa J Ma M Fill K P Campbell R Coronado 《The Journal of general physiology》1988,92(1):1-26
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine. 相似文献
11.
12.
Identification of estrogenresponsive genes is important to understand the molecular mechanisms of estrogen action. Suppression subtractive hybridization was employed to screen estrogenresponsive genes in chick liver. A single injection of estrogen into 6weekold chick induced upregulation of several known genes encoded for yolk proteins, such as Vitellogenin I and II and very low density lipoprotein II (apo-VLDL II). One novel sequence displayed a dramatic change (3fold increase) in response to estrogen treatment. This cDNA fragment was extended and the resultant sequence was analyzed. Translated amino acid sequence was 90, 88, 83 and 87% identical to the Larginine:glycine amidinotransferase of pig, rat, frog and human, respectively. The sequence has a conservative catalytic site of Larginine:glycine amidinotransferase. The expression pattern of this gene in organs is consistent with previous reports of Larginine:glycine amidinotransferase in chick. Thus, this clone represented the chicken Larginine:glycine amidinotransferase. It appeared that estrogeninduced alteration of arginine:glycine amidinotransferase was not dependent on protein synthesis, because concurrent administration of cycloheximide did not affect the estrogenmediated expression pattern. This is the first study demonstrating that Larginine:glycine amidinotransferase is a target of the estrogen receptor. 相似文献
13.
N M Soldatov 《European journal of biochemistry》1988,173(2):327-338
Digitonin and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane sulfonate (Chapso) were used to solubilize the receptor of dihydropyridine calcium antagonists from the transverse tubule membranes of rabbit skeletal muscle. The receptor retained the ability for selective adsorption from either detergent extract by dihydropyridine-Sepharose. Incubation of the affinity resin with nitrendipine resulted in the elution of the receptor protein composed of two main polypeptides with molecular masses of 160 kDa and 53 kDa, as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Only these two subunits were found in the receptor preparation purified to a specific dihydropyridine-binding activity of 2500-2800 pmol/mg protein (60-70% purity) from digitonin-solubilized membranes by a combination of wheat-germ-agglutinin--Sepharose, anion-exchange and dihydropyridine-Sepharose chromatography steps. The individual subunits were isolated in dodecyl-sulfate-denatured form from the preparation of the receptor, enriched by a two-step large-scale procedure applied to Chapso-solubilized membranes. The 160-kDa subunit slowly changed its apparent molecular mass to 125 kDa upon disulfide bond reduction without formation of novel peptides. This finding implies that 160-kDa subunit is cross-linked by intramolecular S-S bridge(s). Chemical deglycosylation with trifluoromethanesulfonic acid showed that the carbohydrate content of large and small subunits accounted for 7.5% and 6.6% by mass, respectively. The dihydropyridine receptor subunits are glycosylated through N-glycoside bonds only. In their ratio of polar to hydrophobic amino acid residues in the amino acid composition of the receptor subunits, these polypeptides behave rather as peripheral proteins. It is suggested that the main portion of polypeptide chains is located outside the membrane in contact with solvent. 相似文献
14.
The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium 总被引:1,自引:0,他引:1 下载免费PDF全文
The level of Ca inside the sarcoplasmic reticulum (SR) is an important determinant of functional activity of the Ca release channel/ryanodine receptor (RyR) in cardiac muscle. However, the molecular basis of RyR regulation by luminal Ca remains largely unknown. In the present study, we investigated the potential role of the cardiac SR luminal auxiliary proteins calsequestrin (CSQ), triadin 1, and junctin in forming the luminal calcium sensor for the cardiac RyR. Recordings of single RyR channels incorporated into lipid bilayers, from either SR vesicle or purified RyR preparations, were performed in the presence of MgATP using Cs+ as the charge carrier. Raising luminal [Ca] from 20 microM to 5 mM increased the open channel probability (Po) of native RyRs in SR vesicles, but not of purified RyRs. Adding CSQ to the luminal side of the purified channels produced no significant changes in Po, nor did it restore the ability of RyRs to respond to luminal Ca. When triadin 1 and junctin were added to the luminal side of purified channels, RyR Po increased significantly; however, the channels still remained unresponsive to changes in luminal [Ca]. In RyRs reassociated with triadin 1 and junctin, adding luminal CSQ produced a significant decrease in activity. After reassociation with all three proteins, RyRs responded to rises of luminal [Ca] by increasing their Po. These results suggest that a complex of CSQ, triadin 1, and junctin confer RyR luminal Ca sensitivity. CSQ apparently serves as a luminal Ca sensor that inhibits the channel at low luminal [Ca], whereas triadin 1 and/or junctin may be required to mediate interactions of CSQ with RyR. 相似文献
15.
Effects of low-intensity training on dihydropyridine and ryanodine receptor content in skeletal muscle of mouse 总被引:2,自引:0,他引:2
Mänttiri S Anttila K Kaakinen M Järvilehto M 《Journal of physiology and biochemistry》2006,62(4):293-301
To evaluate low-intensity exercise training induced changes in the expression of dihydropyridine (DHP) and ryanodine (Ry) receptors both mRNA and protein levels were determined by quantitative RT-PCR and immunoblot analysis from gastrocnemius (GAS) and rectus femoris (RF) muscles of mice subjected to a 15-week aerobic exercise program. The level of muscular work was assayed by changes in myosin heavy chain (MHC) content, myoglobin (Mb) expression and muscle size. The mRNA expression and optical density of DHP receptor increased significantly in GAS by 66.8 and 39.5%, respectively. The expression of Ry receptor, on the other hand, was not up-regulated. In RF, there was a significant increase of 38.4% in the mRNA expression of DHP receptor, although the protein level remained the same. No changes in Ry receptor expression was observed. The training resulted in a 1.58% increase in the amount of MHC IIa and a 2.34% decrease in that of IIb and IId in GAS. A significant 8.3% increase in the Mb content was observed. In RF, no significant changes in MHC or in Mb content were noted. Our results show that an evident increase in the mRNA and protein expression of DHP receptor was induced in GAS even by a relatively low-intensity exercise. Surprisingly, contrast to DHP receptor expression, no changes in Ry receptor mRNA, or protein levels were found, indicating more abundant demand for DHP receptor after increased muscle activity. 相似文献
16.
Kirchhefer U Baba HA Kobayashi YM Jones LR Schmitz W Neumann J 《American journal of physiology. Heart and circulatory physiology》2002,283(4):H1334-H1343
Triadin 1 is a protein in the cardiac junctional sarcoplasmic reticulum (SR) that interacts with the ryanodine receptor, junctin, and calsequestrin, proteins that are important for Ca(2+) release. To better understand the role of triadin 1 in SR-Ca(2+) release, we studied the time-dependent expression of SR proteins and contractility in atria of 3-, 6-, and 18-wk-old transgenic mice overexpressing canine cardiac triadin 1 under control of the alpha-myosin heavy chain (MHC) promoter. Three-week-old transgenic atria exhibited mild hypertrophy. Finally, atrial weight was increased by 110% in 18-wk-old transgenic mice. Triadin 1 overexpression was accompanied by time-dependent changes in the protein expression of the ryanodine receptor, junctin, and cardiac/slow-twitch muscle SR Ca(2+)-ATPase isoform. Force of contraction was already decreased in 3-wk-old transgenic atria. The application of caffeine led to a positive inotropic effect in transgenic atria of 3-wk-old mice. Rest pauses resulted in an increased potentiation of force of contraction after restimulation in 3- and 6-wk-old mice and a reduced potentiation of force of contraction in 18-wk-old transgenic mice. Hence, triadin 1 overexpression triggered time-dependent alterations in SR protein expression, Ca(2+) homeostasis, and contractility, indicating for the first time an inhibitory function of triadin 1 on SR-Ca(2+) release in vivo. 相似文献
17.
A high affinity molecular interaction is demonstrated between calsequestrin and the sarcoplasmic reticular Ca(2+) release channel/ryanodine receptor (RyR) by surface plasmon resonance. K(D) values of 92 nM and 102 nM for the phosphorylated and dephosphorylated calsequestrin have been determined, respectively. Phosphorylation of calsequestrin seems not to influence this high affinity interaction, i.e. calsequestrin might always be bound to RyR. However, the phosphorylation state of calsequestrin determines the amount of Ca(2+) released from the lumen. Dephosphorylation of approximately 1% of the phosphorylated calsequestrin could be enough to activate the RyR channel half-maximally, as we have shown previously [Szegedi et al., Biochem. J. 337 (1999) 19]. 相似文献
18.
Identification of the cardiac ryanodine receptor channel in membrane blebs of sarcoplasmic reticulum
Blebs of the sarcoplasmic reticulum (SR) membrane of heart muscle cells were generated after saponin perforation of the plasma membrane followed by complete hypercontraction of the cell. Although characteristic proteins of the plasma membrane, namely the beta1-adrenoreceptor and Galphai, were stained by monoclonal antibodies in the hypercontracted cells, these proteins could not be detected in the adjacent blebs. Monoclonal antibodies to the cardiac ryanodine receptor (RyR2), calsequestrin and SERCA2 bound at different amounts to surface components of the blebs and to components of the hypercontracted cells. From the immunofluorescence signals we conclude that the blebs are mainly constituted of corbular and junctional SR membrane, and only to a lesser extent of network SR membrane. Deconvolution microscopy revealed that the membrane location of RyR2, calsequestrin and SERCA2 in the bleb is comparable to native SR membrane. At the bleb membrane giga-ohm seals could be obtained and patches could be excised in a way that single-channel currents could be measured, although these are not completely identified. 相似文献
19.
Lee JM Rho SH Shin DW Cho C Park WJ Eom SH Ma J Kim DH 《The Journal of biological chemistry》2004,279(8):6994-7000
In mammalian striated muscles, ryanodine receptor (RyR), triadin, junctin, and calsequestrin form a quaternary complex in the lumen of sarcoplasmic reticulum. Such intermolecular interactions contribute not only to the passive buffering of sarcoplasmic reticulum luminal Ca2+, but also to the active Ca2+ release process during excitation-contraction coupling. Here we tested the hypothesis that specific charged amino acids within the luminal portion of RyR mediate its direct interaction with triadin. Using in vitro binding assay and site-directed mutagenesis, we found that the second intraluminal loop of the skeletal muscle RyR1 (amino acids 4860-4917), but not the first intraluminal loop of RyR1 (amino acids 4581-4640) could bind triadin. Specifically, three negatively charged residues Asp4878, Asp4907, and Glu4908 appear to be critical for the association with triadin. Using deletional approaches, we showed that a KEKE motif of triadin (amino acids 200-232) is essential for the binding to RyR1. Because the second intraluminal loop of RyR has been previously shown to contain the ion-conducting pore as well as the selectivity filter of the Ca2+ release channel, and Asp4878, Asp4907, and Glu4908 residues are predicted to locate at the periphery of the pore assembly of the channel, our data suggest that a physical interaction between RyR1 and triadin could play an active role in the overall Ca2+ release process of excitation-contraction coupling in muscle cells. 相似文献
20.
Maura Porta Paula L. Diaz-Sylvester Alma Nani Julio A. Copello 《生物化学与生物物理学报:生物膜》2008,1778(11):2469-2479
Ca2+-entry via L-type Ca2+ channels (DHPR) is known to trigger ryanodine receptor (RyR)-mediated Ca2+-release from sarcoplasmic reticulum (SR). The mechanism that terminates SR Ca2+ release is still unknown. Previous reports showed evidence of Ca2+-entry independent inhibition of Ca2+ sparks by DHPR in cardiomyocytes. A peptide from the DHPR loop II-III (PepA) was reported to modulate isolated RyRs. We found that PepA induced voltage-dependent “flicker block” and transition to substates of fully-activated cardiac RyRs in planar bilayers. Substates had less voltage-dependence than block and did not represent occupancy of a ryanoid site. However, ryanoids stabilized PepA-induced events while PepA increased RyR2 affinity for ryanodol, which suggests cooperative interactions. Ryanodol stabilized Imperatoxin A (IpTxA) binding but when IpTxA bound first, it prevented ryanodol binding. Moreover, IpTxA and PepA excluded each other from their sites. This suggests that IpTxA generates a vestibular gate (either sterically or allosterically) that prevents access to the peptides and ryanodol binding sites. Inactivating gate moieties (“ball peptides”) from K+ and Na+ channels (ShakerB and KIFMK, respectively) induced well resolved slow block and substates, which were sensitive to ryanoids and IpTxA and allowed, by comparison, better understanding of PepA action. The RyR2 appears to interact with PepA or ball peptides through a two-step mechanism, reminiscent of the inactivation of voltage-gated channels, which includes binding to outer (substates) and inner (block) vestibular regions in the channel conduction pathway. Our results open the possibility that “ball peptide-like” moieties in RyR2-interacting proteins could modulate SR Ca2+ release in cells. 相似文献