首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of semi-interpenetrating polymer network (semi-IPN) materials were prepared by blending polymerization of acrylic acid (AA) in cationic starch (CS) and poly(methacryloyloxyethyl trimethylammonium chloride) (PDMC) solution. The crosslinker concentration, the feed ratio of the CS-g-AA to PDMC was discussed in term of the swelling capacity, and hydrogel properties were evaluated by network parameters Mc, morphological and compressive load tests. The semi-IPN hydrogels were also characterized by FT-IR spectroscopy to confirm the interactions between CS-g-AA and PDMC. Electron microscopy involved to staining of the anionic phases using CsF showed a transition from two-phase to compatible structure with the increasing content of PDMC, and further confirmed that the semi-IPN structure in hydrogels along with DSC. The resultant semi-IPN hydrogels were found to possess appreciable compatibility, good swellability and mechanical strength.  相似文献   

2.
A simple, sequential approach for creation of hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels has been developed and characterized. The chemistry involves an initial step growth polymerization reaction between PEG-diacrylate and dithiothreitol (DTT) to form acrylate-terminated (-PEG-DTT-)n PEG chains, followed by photocross-linking to form a hydrogel network. Varying the extent of step growth polymerization prior to photocross-linking allowed for control over the equilibrium swelling ratio, degradation, and erosion of PEG hydrogels. Hydrogel degradability had a significant effect on behavior of human mesenchymal stem cells (hMSCs) encapsulated within PEG hydrogels, both in the presence and absence of an RGDSP cell adhesion ligand. In particular, enhanced network degradability resulted in enhanced hMSC viability and spreading during in vitro culture. Comparison of degradable and nondegradable hydrogels with similar physical properties (e.g., equilibrium swelling ratio) demonstrated that hMSC viability and spreading were dependent on network degradability. This study demonstrates that hydrolytically degradable PEG hydrogels can be formed via a sequential step growth polymerization and photocross-linking process and the resulting materials may serve as promising matrices for 3-dimensional stem cell culture and tissue engineering applications.  相似文献   

3.
A series of poly(ethylene glycol)-protein hydrogels were synthesized with different proteins, and the resultant structures were characterized in terms of swelling behavior and mechanical, optical, and drug release properties. Irrespectively of the protein involved in polymerization with poly(ethylene glycol), all studied systems were found to be loosely cross-linked networks, where both polymer and protein are completely solvated, enabling as high as 96% water content. Changes in the apparent transparency of the hydrogels synthesized with different proteins were attributed to the ability of the protein component to self-associate via hydrophobic interactions. The polyelectrolyte nature of the protein component governs the pH responsiveness of the network, which manifested itself in a pH-dependent mechanism of swelling and drug release. It was demonstrated that there is great opportunity to modulate the final characteristics of the hydrogel system to fit the need of specific biomedical application.  相似文献   

4.
A polyaniline/polyacrylamide composite hydrogel is synthesized, characterized and measured. Fourier transform infrared spectroscopy reveals that partial polyaniline chains have grafted on the nitrogen atoms of polyacrylamide. X-ray diffraction shows that typical polyaniline crystallization is formed in polyaniline/polyacrylamide composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. UV–Vis spectra indicates the formation of high conductive emeraldine polyaniline salt in polyaniline/polyacrylamide composite. Scanning electron microscopy shows a typical porous structure in the composite hydrogel. The polyaniline/polyacrylamide hydrogel has a good conductivity of 0.6 S/cm and good release stability in acidic and neutral conditions.  相似文献   

5.
Spontaneously forming hydrogels composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers, poly(MPC-co-methacrylic acid) (PMA), and poly(MPC-co-n-butyl methacrylate) (PMB) were examined. The MPC copolymer hydrogel was observed to have a spontaneous gelation property. To determine the properties of the hydrogels and why the gelation takes place, we have studied the properties of the hydrogels by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC). The morphologies of the hydrogels were spongelike with a homogeneous structure. By XPS analysis in terms of the molecular distributions in the hydrogels, it was observed that a stabilization time was required for the hydrogel to undergo chain rearrangement. DSC thermograms of the hydrogels were different from their components, PMA and PMB. For the hydrogel, a crystallization peak around -30 degrees C was observed. This result indicated that some ordered structures existed in the hydrogels. To determine the role of the MPC groups, aqueous solutions of poly(methacrylic acid) (PMAc) and PMB were mixed. The mixture of PMAc-PMB turned into a sol state, and the sol state remained for a week. When the mixture was cooled, a very weak hydrogel was prepared. This result suggested that the MPC groups were the dominant unit for spontaneously forming the hydrogels.  相似文献   

6.
Hemicellulose-based hydrogels were prepared by radical polymerization of 2-hydroxyethyl methacrylate or poly(ethylene glycol) dimethacrylate with oligomeric hydrosoluble hemicellulose modified with well-defined amounts of methacrylic functions. The polymerization reaction was carried out in water at 40 degrees C using a redox initiator system. The hydrogels were in general elastic, soft, and easily swellable in water. Their viscoelastic properties were determined by oscillatory shear measurements on 2 mm thick hydrogels under a slight compression to avoid slip, over the frequency range 10(-1) to 10(2). The rheological characterization indicated that the elastic response of the hydrogels was stronger than the viscous response, leading to the conclusion that the hydrogel systems displayed a predominantly solid-like behavior. The curves showed an increase in shear storage modulus with increasing cross-linking density. The nature of the synthetic comonomer in the hemicellulose-based hydrogels also influenced the shear storage modulus. Comparison of hemicellulose-based hydrogels with pure poly(2-hydroxyethyl methacrylate) hydrogels showed that their behaviors were rather similar, demonstrating that the synthetic procedure made it possible to prepare hemicellulose-based hydrogels with properties similar to those of pure poly(2-hydroxyethyl methacrylate) hydrogels.  相似文献   

7.
Yi JZ  Ma YQ  Zhang LM 《Bioresource technology》2008,99(13):5362-5367
A series of novel sodium humate/poly(N-isopropylacrylamide) (SH/PNIPA) hydrogels were synthesized by solution polymerization. The swelling and decoloring properties of SH/PNIPA hydrogels were also examined. Experiment results show that there exist hydrogen-bonding interactions between SH and PNIPA in the SH/PNIPA hydrogels network, which are not strong enough to disrupt the aggregation of dehydrated PNIPA chains at phase transition temperature, leading to the same volume phase transition temperature as pure PNIPA hydrogel. The adsorption and desorption of methylene blue (MB) for the hydrogels were influenced by temperature, initial MB concentration and SH amount. Low temperature favors the adsorption and desorption of MB. Appropriate SH amount of the hydrogels is crucial for the adsorption and desorption of MB. The maximum adsorption capacity was 10.8 mg MB per gram of SH/PNIPA gel.  相似文献   

8.
Various interpenetrating polymer network (IPN) hydrogels with sensitivity to temperature and pH were prepared by introducing the pH-sensitive polymer polyaspartic acid (PASP) hydrogel, into the poly(N-isopropylacrylamide) (PNIPAAm) hydrogel system for the purpose of improving its response rate to temperature. The morphologies and thermal behavior of the prepared IPN hydrogels were studied by both scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The IPN hydrogels showed a large and uneven porous network structure, without showing the common PNIPAAm hydrogel structure. The paper moreover studied their swelling properties, such as temperature dependence of equilibrium swelling ratio, shrinking kinetics, re-swelling kinetics and oscillatory swelling behavior in water. The swelling experiment results revealed that IPN hydrogels exhibited much faster shrinking and re-swelling in function of the composition ratio of the two network components. These fast responsive hydrogels foster potential applications in biomedical and biotechnology fields.  相似文献   

9.
Hydrogel dressings have significant advantages such as absorption of tissue exudate, maintenance of proper moist environment, and promotion of cell proliferation. However, facile preparation method and high-efficient antibacterial hydrogel dressings are still a great challenge. In this study, a facile approach to prepare antibacterial nanocomposite hydrogel dressing to accelerate healing was explored. The hydrogels consisted of quaternized chitosan and chemically cross-linked polyacrylamide, as well as silver nanoparticles (AgNPs) stabilized by chitosan. The synthesis of the hydrogels including the formation of AgNPs and polymerization of acrylamide was accomplished simultaneously under UV irradiation in 1 hour without adding initiator. The hydrogels showed favorable tensile strength of ∼100 kPa with elongation at break over 1000% and shear modulus of ∼104 Pa as well as suitable swelling ratio, which were appropriate for wound dressing. The combination of quaternized chitosan and AgNPs exhibited high-efficient and synergetic antibacterial performance with low cytotoxicity. In vivo animal experiments showed that the hydrogel can effectively prevent wound infection and promote wound healing. This study provides a facile method to produce antibacterial hydrogel wound dressing materials.  相似文献   

10.
The mass transport of solutes through hydrogels is an important design consideration in materials used for tissue engineering, drug delivery, and protein arrays used to quantify protein concentration and activity. We investigated the use of poly(ethylene glycol) (PEG) as a porogen to enhance diffusion of macromolecules into the interior of polyacrylamide and PEG hydrogel posts photopatterned within microfluidic channels. The diffusion of GST-GFP and dextran-FITC into hydrogels was monitored and effective diffusion coefficients were determined by fitting to the Fickian diffusion equations. PEG-diacrylate (M(r) 700) with porogen formed a macroporous structure and permitted significant penetration of 250 kDa dextran. Proteins copolymerized in these macroporous hydrogels retained activity and were more accessible to antibody binding than proteins copolymerized in nonporous gels. These results suggest that hydrogel macroporosity can be tuned to regulate macromolecular transport in applications such as tissue engineering and protein arrays.  相似文献   

11.
The impact of synthesis and solution formulation parameters on the swelling and mechanical properties of a novel class of thermally and chemically gelling hydrogels combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine cross-linking macromers was evaluated. Through variation of network hydrophilicity and capacity for chain rearrangement, the often problematic tendency of thermogelling hydrogels to undergo significant syneresis was addressed. The demonstrated ability to tune postformation dimensional stability easily at both the synthesis and formulation stages represents a significant novel contribution toward efforts to utilize poly(N-isopropylacrylamide)-based polymers as injectable biomaterials. Furthermore, the cytocompatibility of the hydrogel system under relevant conditions was established while demonstrating time- and dose-dependent cytotoxicity at high solution osmolality. Such injectable in situ forming degradable hydrogels with tunable water content are promising candidates for many tissue-engineering applications, particularly for cell delivery to promote rapid tissue regeneration in non-load-bearing defects.  相似文献   

12.
This paper demonstrates that miscible blends from water-insoluble polymers, such as poly(2,4,4-trimethylhexamethylene terephthalamide) (1), methylamine imidized poly(methyl methacrylate) (2), and aromatic poly(ether sulfone) (3) and water-soluble polymers, such as poly(2-ethyl-2-oxazoline) (4) and poly(N-vinyl pyrrolidone) (5), respectively, represent a new class of supramolecular hydrogels. When the degree of polymerization (DP) of the water-soluble polymer is larger than that of water-insoluble polymer, the resulting hydrogels adsorb extremely high amounts of water (i.e., 229 wt % in the case of the hydrogel 1/4) and remain mechanically tough. The high water uptake capability of these blends is explained by a supramolecular network structure generated by H-bonding and/or other noncovalent interactions between the water-insoluble hydrophobic polymer and water-soluble hydrophilic segments as reversible cross-linking points interconnected by hydrophilic water soluble segments. The glass transition temperatures of these hydrogels are tailored via the ratio between the weight percent of the two polymers and by the glass transition temperature of the parent polymers. These supramolecular hydrogels can be processed from melt or solution and maintain excellent mechanical properties both in dry and in the water swollen state. This class of hydrogels is of interest for areas such as membranes, contact lenses, tissue engineering, and other biomedical applications.  相似文献   

13.
To obtain a novel biodegradable cross-linker, polymerizable polyphosphate (PIOP) was synthesized by ring-opening polymerization of 2-i-propyl-2-oxo-1,3,2-dioxaphospholane with 2-(2-oxo-1,3,2-dioxaphosphoroyloxyethyl methacrylate) (OPEMA). The number averaged molecular weight of the PIOP was 1.2 x 10(4), and the number of OPEMA units in one PIOP molecule was 2.2. Nonenzymatic degradation of the PIOP was evaluated in various pH aqueous media. The degree of hydrolysis was dependent on the pH; that is, it increased with an increase in the pH of the medium. At pH 11.0, the PIOP completely degraded in only 6 days. The poly[2-methacryloyloxyethyl phosphorylcholine (MPC)] cross-linked with the PIOP was prepared by radical polymerization. This polymer could form hydrogel, and the free water fraction in the hydrogel was high. The enzymatic activity of trypsin in contact with the hydrogel was similar to that in buffer solution. There is no adverse effect caused by the hydrogel to reduce the function of the trypsin. The cytotoxicity of poly(MPC) and degraded PIOP was evaluated using v79 cells, and it was not observed in either case. In conclusion, PIOP is a hydrolyzable polymer, which can be used as a cross-linker, and novel hydrogels having biodegradability and biocompatibility were prepared from poly(MPC) cross-linked with the PIOP.  相似文献   

14.
Shih H  Lin CC 《Biomacromolecules》2012,13(7):2003-2012
Thiol-ene photoclick hydrogels have been used for a variety of tissue engineering and controlled release applications. In this step-growth photopolymerization scheme, four-arm poly(ethylene glycol) norbornene (PEG4NB) was cross-linked with dithiol containing cross-linkers to form chemically cross-linked hydrogels. While the mechanism of thiol-ene gelation was well described in the literature, its network ideality and degradation behaviors are not well-characterized. Here, we compared the network cross-linking of thiol-ene hydrogels to Michael-type addition hydrogels and found thiol-ene hydrogels formed with faster gel points and higher degree of cross-linking. However, thiol-ene hydrogels still contained significant network nonideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEG-norbornene macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, we found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network cross-linking. In an attempt to manipulate network cross-linking and degradation of thiol-ene hydrogels, we incorporated peptide cross-linkers with different sequences and characterized the hydrolytic degradation of these PEG-peptide hydrogels. In addition, we incorporated a chymotrypsin-sensitive peptide as part of the cross-linkers to tune the mode of gel degradation from bulk degradation to surface erosion.  相似文献   

15.
We propose a novel, single step method for the production of polyacrylamide hydrogels with a gradient in mechanical properties. In contrast to already existing techniques such as UV photo‐polymerization with photomasks (limited penetration depth) or microfluidic gradient mixers (complex microfluidic chip), this technique is not suffering such limitations. Young's modulus of the hydrogels was varied by changing the total monomer concentration of the hydrogel precursor solution. Using programmable syringe pumps, the total monomer concentration in the solution fed to the hydrogel mold was varied from 16 wt% down to 5 wt% over the feeding time to obtain a gradient in compliance ranging from 150 kPa down to 20 kPa over a length of 10 mm down to 2.5 mm. Polymerization was achieved with the dual initiation system composed of ammonium persulfate and N,N,N′,N′‐tetramethylethylenediamine, which were both fed through separate capillaries to avoid premature polymerization. Functionalized with the model ligand collagen I, the substrates were bioactive and supported the attachment of human foreskin fibroblasts (around 30% of the cells seeded attached after 1 h). A kinetic morphology study on homogeneous hydrogels of different stiffness's indicated that fibroblasts tend to spread to their final size within 2 h on stiff substrates, while the spreading time was much longer (ca. 4–5 h) on soft substrates. These trends were confirmed on hydrogels with compliance gradients, showing well spread fibroblasts on the stiff end of the hydrogel after 2 h, while the cells on the soft end still had small area and rounded morphology. Biotechnol. Bioeng. 2013; 110: 1508–1519. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The extracellular matrix (ECM) is an attractive model for designing synthetic scaffolds with a desirable environment for tissue engineering. Here, we report on the synthesis of ECM-mimetic poly(ethylene glycol) (PEG) hydrogels for inducing endothelial cell (EC) adhesion and capillary-like network formation. A collagen type I-derived peptide GPQGIAGQ (GIA)-containing PEGDA (GIA-PEGDA) was synthesized with the collagenase-sensitive GIA sequence attached in the middle of the PEGDA chain, which was then copolymerized with RGD capped-PEG monoacrylate (RGD-PEGMA) to form biomimetic hydrogels. The hydrogels degraded in vitro with the rate dependent on the concentration of collagenase and also supported the adhesion of human umbilical vein ECs (HUVECs). Biomimetic RGD/GIA-PEGDA hydrogels with incorporation of 1% RGD-PEGDA into GIA-PEGDA hydrogels induced capillary-like organization when HUVECs were seeded on the hydrogel surface, while RGD/PEGDA and GIA-PEGDA hydrogels did not. These results indicate that both cell adhesion and biodegradability of scaffolds play important roles in the formation of capillary-like networks.  相似文献   

17.
Guar gum/poly(acrylic acid) semi-interpenetrating polymer network (IPN) hydrogels have been prepared via free radical polymerization in the presence of a crosslinker of N,N′-methylene bisacrylamide (MBA). The kinetics of swelling and the water transport mechanism were studied as a function of the composition of the hydrogels and the pH of the swelling medium. Hydrogels showed enormous swelling in aqueous medium and displayed swelling characteristics, which were highly dependent on the chemical composition of the hydrogels and pH of the medium in which hydrogels were immersed (ionic strength I = 0.15 mol/L). The semi-INP hydrogels were characterized by evaluating various network parameters such as average molecular weight between crosslinks (Mc) crosslink density (ρ) and mesh size ξ.  相似文献   

18.
The physical properties, porosity, and physiological behavior of synthetic biodegradable hydrogels have been identified as highly critical design parameters in most tissue engineering materials applications. Nanotechnology may provide the means to manipulate these parameters by accessing control over the network structure of the biomaterial, providing unique property relationships that often result from nanostructured materials. In this study, a lyotropic liquid crystal (LLC) was used as a polymerization template in the formation of a photopolymerizable biodegradable PLA-b-PEG-b-PLA (PEG = poly(ethylene glycol); PLA = poly(lactic acid)) material with nanoscale lamellar morphology. Through ordering of the biodegradable monomer within the liquid crystal assembly, a 2-fold increase in maximum polymerization rate and a 30% increase in double bond conversion were realized over isotropic monomer formulations. The resulting network structure of the templated PLA-b-PEG-b-PLA material has a dramatic affect on the physical properties of the hydrogel including an 80% increase in network swelling and an approximately 230% increase in diffusivity. This increase in permeability and solvent uptake leads to rapid degradation of the lamellar templated samples, further demonstrating the influence of the LLC directed network structure on the porosity and physical properties of the biodegradable material. The ability to control the porosity, physical properties, and behavior of a biodegradable hydrogel simply by imparting LLC network structure, without changing the chemistry or biocompatibility of the polymer, could prove highly advantageous in the design of synthetic biomaterials for potential medical applications.  相似文献   

19.
We describe the synthesis of a novel biotinylated nanotextured degradable hydrogel that can be rapidly surface engineered with a diverse range of biotinylated moieties. The hydrogel is synthesized by reacting methacrylated biotin-PEG with dimethacrylated P LA-b- PEG-b-P LA (LPLDMA, PEG = poly(ethylene glycol), PLA = poly(lactic acid)),or dimethacrylated PEG-b-P LA-b- PEG (PLPDMA). Methacrylated biotin-PEG is prepared by reacting biotin-PEG-OH with methacrylic anhydride. Biotin-PEG-OH is prepared by reacting alpha-hydroxy-omega-amine PEG with N-hydroxysuccinimide-biotin. Confirmation of the final product is determined using (1)H NMR and Fourier transform infrared spectroscopy (FTIR). The integrity and surface presentation of the biotin units is observed spectrophotometrically using the HABA/avidin assay. To produce nanostructured polymer topography, a self-assembling lyotropic liquid crystalline mesophase is used as a polymerization template, generating biotinylated hydrogels with highly organized lamellar matrix geometry. Traditionally processed isotropic hydrogels are used for comparison. Scanning electron microscopy shows that isotropic hydrogels have a smooth glassy appearance while lamellar templated hydrogels have defined surface topographical features that enhance preosteoblast human palatal mesenchymal cell (HEPM) attachment. Engineering the surfaces of the hydrogels with cell adhesive Arg-Gly-Asp (RGD) peptide sequences using the biotin-avidin interaction significantly enhances cell attachment. Surface engineering of cell adhesive peptides in conjunction with the lamellar template induced surface topography generates additive enhancements in cell attachment.  相似文献   

20.
Electroactive polyaniline films have been synthesized by using a copper-containing oxidoreductase, bilirubin oxidase (BOD). Enzymatic polymerization took place on the surface of BOD-adsorbed solid matrix which was in contact with a buffer solution containing aniline. Optimum conditions for enzymatic polymerization of aniline were investigated. Elemental analysis and IR spectroscopy indicated that the enzymatically synthesized film was polyaniline. The cyclic voltammetric studies demonstrated that the polyaniline film was electrochemically reversible in the redox properties in acidic aqueous solutions. Since the film retained enzymatic activity of BOD which was employed as a catalyst for polymerization, enzymatic polymerization seems promising in preparation of immobilized enzyme membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号