首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparisons between aquatic and terrestrial species provide an opportunity to examine how sex-specific adaptations interact with the environment to influence body shape. In terrestrial female tortoises, selection for fecundity favors the development of a large internal abdominal cavity to accommodate the clutch; in conspecific males, sexual selection favors mobility with large openings in the shell. To examine to what extent such trends apply in aquatic chelonians we compared the body shape of males and females of two aquatic turtles (Chelodina colliei and Mauremys leprosa). In both species, females were larger than males. When controlled for body size, females exhibited a greater relative internal volume and a higher body condition index than males; both traits potentially correlate positively with fecundity. Males were more streamlined (hydrodynamic), and exhibited larger openings in the shell providing more space to move their longer limbs; such traits probably improve mobility and copulation ability (the males chase and grab the female for copulation). Overall, although the specific constraints imposed by terrestrial and aquatic locomotion shape the morphology of chelonians differently (aquatic turtles were flatter, hence more hydrodynamic than terrestrial tortoises), the direction for sexual shape dimorphism remained unaffected. Our main conclusion is that the direction of sexual shape dimorphism is probably more consistent than sexual size dimorphism in the animal kingdom.  相似文献   

2.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

3.
Sexual size dimorphism and male combat in snakes   总被引:2,自引:0,他引:2  
Richard Shine 《Oecologia》1978,33(3):269-277
Summary This paper reviews published literature on snakes to test the hypothesis that large male size, relative to female size, evolves because of the advantage it confers in male combat. Analysis of the data reveals a high correlation between the occurrence of male combat, and sexual dimorphism in which the male is the larger sex. This correlation holds (i) within the total sample of snake species (n=224), (ii) within the family Colubridae (n=134), and (iii) in a comparison between the eight families of snakes for which data are available. These results strongly support the hypothesis that large male size is an adaptation to intrasexual competition. The analysis also shows that females are larger than males in about 66% of snake species, that male combat is known in only about 15% of species, and that both sexual size dimorphism and the incidence of male combat tend to be distributed along taxonomic lines.  相似文献   

4.
Sexual size dimorphism is a common phenomenon in the animal kingdom, and its seasonal change has been reported in some species that possess traits dimorphic only in males and specialized for male mating success. However, few studies have examined seasonal change in sexual dimorphism of traits possessed by both sexes. Here, we examined the reproductive biology of the hermit crab Pagurus minutus, at a sandflat in the Waka River estuary, Japan, with special reference to seasonal changes in sexual dimorphism of the large claw (major cheliped) size by conducting population and precopulatory guarding-pair sampling. Previous investigation demonstrated that the major cheliped is used as a weapon, and its size, more than body size, determines the winner in male–male contests of this species. We found ovigerous females from November to April, peaking in January, when 80% of females were ovigerous. Sexual size dimorphism of the major cheliped was observed; the degree of dimorphism increased in the reproductive season, when only males possessed an enlarged major cheliped. In addition, in the reproductive season, precopulatory guarding males had a larger body and larger relative size of the major cheliped than did solitary males, although the major cheliped size in guarding males seemed to reach an upper limit. These results suggest that seasonal change in sexual dimorphism of the major cheliped size in P. minutus strongly reflects sexual selection favoring the development of this natural weaponry, and that the degree of the dimorphism might be limited through natural selection.  相似文献   

5.
Female-biased size dimorphism, in which females are larger than males, is prevalent in many animals. Several hypotheses have been developed to explain this pattern of dimorphism. One of these hypotheses, the mobility hypothesis, suggests that female-biased size dimorphism arises because smaller males are favored in scramble competition for mates. Using radiotelemetry, we assessed the mobility hypothesis in the Cook Strait giant weta (Deinacrida rugosa), a species with strong female-biased size dimorphism, and tested the prediction that male traits promoting mobility (i.e., longer legs, smaller bodies) are useful in scramble competition for mates and thus promote reproductive success. Our predictions were supported: males with longer legs and smaller bodies exhibited greater mobility (daily linear displacement when not mating), and more mobile males had greater insemination success. No phenotypic traits predicted female mobility or insemination success. In species with female-biased size dimorphism, sexual selection on males is often considered to be weak compared to species in which males are large or possess weaponry. We found that male giant weta experience sexual selection intensities on par with males of a closely related harem-defending polygynous species, likely because of strong scramble competition with other males.  相似文献   

6.
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

7.
Early male arrival at breeding sites, or protandry, is thought to have evolved from intrasexual competition among males for access to mates or breeding resources. Males of polygynous species tend to be larger than females and have exaggerated secondary sexual traits. Additionally, such species show a high degree of protandry, suggesting that timing of arrival is sexually selected. Species showing limited sexual dimorphism and showing sexual monochromatism may be expected to show limited early male arrival. However, there are very few studies of migration timing of the sexes in such species because individuals cannot be readily identified to sex in the hand. In this study, we genetically sexed birds and found no evidence for early male arrival, for a population of migratory Song Sparrows Melospiza melodia . For our study population, males and females display limited sexual size dimorphism and are sexually monochromatic which is characteristic of the species. Fat scores for males were inversely associated with timing of arrival, whereas for females, larger-winged birds arrived sooner – suggesting that early migration timing may be selected for in both sexes.  相似文献   

8.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

9.
In Odonata, many species present sexual size dimorphism (SSD), which can be associated with male territoriality in Zygoptera. We hypothesized that in the territorial damselfly Argia reclusa, male–male competition can favor large males, and consequently, drive selection pressures to generate male-biased SSD. The study was performed at a small stream in southeastern Brazil. Males were marked, and we measured body size and assessed the quality of territories. We tested if larger territorial males (a) defended the best territories (those with more male intrusions and visiting females), (b) won more fights, and (c) mated more. Couples were collected and measured to show the occurrence of sexual size dimorphism. Results indicated that males are larger than females, and that territorial males were larger than non-territorial males. Larger territorial males won more fights and defended the best territories. There was no difference between the mating success of large territorial and small non-territorial males. Although our findings suggest that male territoriality may play a significant role on the evolution of sexual size dimorphism in A. reclusa, we suggest that other factors should also be considered to explain the evolution of SSD in damselflies, since non-territorial males are also capable of acquiring mates.  相似文献   

10.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

11.
Males and females differ in body size in many animals, but the direction and extent of this sexual size dimorphism (SSD) varies widely. Males are larger than females in most lizards of the iguanian clade, which includes dragon lizards (Agamidae). I tested whether the male larger pattern of SSD in the peninsula dragon lizard, Ctenophorus fionni, is a result of sexual selection for large male size or relatively higher mortality among females. Data on growth and survivorship were collected from wild lizards during 1991–1994. The likelihood of differential predation between males and females was assessed by exposing pairs of male and female lizards to a predator in captivity, and by comparing the frequency of tail damage in wild‐caught males and females. Male and female C. fionni grew at the same rate, but males grew for longer than females and reached a larger asymptotic size (87 mm vs. 78 mm). Large males were under‐represented in the population because they suffered higher mortality than females. Predation may account for some of this male‐biased mortality. The male‐biased SSD in C. fionni resulted from differences in growth pattern between the sexes. The male‐biased SSD was not the result of proximate factors reducing female body size. Indeed SSD in this species remained male‐biased despite high mortality among large males. SSD in C. fionni is consistent with the ultimate explanation of sexual selection for large body size in males.  相似文献   

12.
R. Shine  M. Fitzgerald 《Oecologia》1995,103(4):490-498
Although adaptationist hypotheses predict a functional relationship between mating systems and sexual size dimorphism, such predictions are difficult to test because of the high degree of phylogenetic conservatism in both of these traits. Taxa that show intraspecific variation in mating systems hence offer valuable opportunities for more direct tests of evolutionary-ecological hypotheses. Based on a collation of published and unpublished records, we document intraspecific geographic variation in mating systems (presence versus absence of male-male combat) within the widely-distributed Australian python Morelia spilota. Radiotelemetric monitoring of 19 free-ranging pythons in a population in north-eastern New South Wales showed that these animals display a mating system of female defence polygyny. Previous studies on a southern population of the same species found that males engaged in long mate-searching movements, showed no overt agonistic behavior, and formed long-term (>2 months) aggregations around reproductive females. In strong contrast, our adult male carpet pythons (i) moved about relatively little (mean displacement <11 m/day) during the mating season, (ii) remained with females only briefly (<5 days), and (iii) engaged in male-male combat in the vicinity of females. This male-male combat included vigorous biting as well as ritualised wrestling matches, resulting in a high incidence of bite scars in adult males. In keeping with predictions from sexual selection theory, males attain larger body sizes than females in this population, whereas females grow larger than males in the previously-studied southern population where males do not engage in physical combat for mating opportunities.  相似文献   

13.
Schultz ([1949] Am. J. Phys. Anthropol. 7:401-424) presented a conundrum: among primates, sexual dimorphism of the pelvis is a developmental adjunct to dimorphism in other aspects of the body, albeit in the converse direction. Among species in which males are larger than females in body size, females are larger than males in some pelvic dimensions; species with little sexual dimorphism in nonpelvic size show little pelvic dimorphism. Obstetrical difficulty does not explain this relationship. The present study addresses this issue, evaluating the relationship between pelvic and femoral sexual dimorphism in 12 anthropoid species. The hypothesis is that species in which males are significantly larger than females in femoral size will have a higher incidence, magnitude, and variability of pelvic sexual dimorphism, with females having relatively larger pelves than males, compared with species monomorphic in femoral size. The results are consistent with the hypothesis. The proposed explanation is that the default pelvic anatomy in adulthood is that of the female; testosterone redirects growth from the default type to that of the male by differentially enhancing and repressing growth among the pelvic dimensions. Testosterone also influences sexual dimorphism of the femur. The magnitude of the pelvic response to testosterone is greater in species that are sexually dimorphic in the femur than in those that are monomorphic.  相似文献   

14.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

15.
In many bird and mammal species, males are significantly larger than females. The prevailing explanation for larger-sized males is that sexual selection drives increased male size. In addition, researchers commonly assume that the extent of dimorphism indicates the strength of selection for increased size in males. Here, through reconstruction of ancestral morphology for males and females of one large avian clade we present data that contradict this assumption and illustrate that selection for decreased female size explains 'male-biased' dimorphism ca. 50% of the time. Our findings are also inconsistent with ecological niche partitioning between the sexes and increased breeding benefits from reduced female size as general explanations for the evolution of size dimorphism within the clade. We conclude that it is incorrect to assume sexual dimorphism results from a single selective factor, such as directional sexual selection on increased male size. Rather, we suggest that the selective forces leading to sexual dimorphism may vary between species and should be tested on a case-by-case basis using a phylogenetic approach.  相似文献   

16.
17.
Observations and several types of field experiments on the mating behavior of wood frogs have revealed the proximate mechanisms for a size-related reproductive advantage in both males and females. For females, larger individuals produce larger clutches; for males, larger individuals can better remain clasped to females when contested by rival males and can better depose males clasped to other females. No results obtained support of the existence of mate choice in either males or females. Males were estimated to be 4.74 times as variable as females in the number of zygotes produced per individual per season; however, much of the variation in male RS resulted from a male-biased sex ratio at the breeding site rather than from sexual selection. After taking sex ratio effects into consideration, males were estimated to be only 1.63 times as variable as females. Patterns of variation in RS in males and females are associated with numerous sex-specific differences in life history and morphology. Life history differences include differential growth rates, ages at sexual maturity, and rates of mortality. Interpretation of how the body size dimorphism (females larger than males) in this species relates to sexual selection is consistent with information on how similar variations in body size influence RS for each sex, and how males and females differ in the functional relationship between body size and RS. Average RS increases more with body size in females than in males. Although body size directly influences RS for females, the possibility exists that, for males, other anatomical features correlated with body size more directly affect RS. Preliminary evidence suggests that sexual selection influences male arm length and that the male body size : RS relationship results as an incidental correlation.  相似文献   

18.
Sexual dimorphisms in weaponry and aggression are common in species in which one sex (usually males) competes for access to mates or resources necessary for reproduction – sexually dimorphic weaponry and aggression, in other words, are frequently the result of intrasexual selection. In snapping shrimp, the major chela (snapping claw) can be a deadly weapon, and males of many species have larger chelae than females, a pattern readily interpreted as resulting from intrasexual selection. Thus, males might be expected to show more sex‐specific aggression than females, and be more aggressive overall. We tested these predictions in two species of snapping shrimp in a territorial defense context. Neither of these predictions was supported: in both species, females, but not males, engaged in sex‐specific aggression and females were more aggressive than males overall. These contrasting sexual dimorphisms – larger weaponry in males but higher aggression in females – highlight the importance of considering the function of weaponry and aggression in contexts other than direct competitions over mates. In addition, species differences in the degree of sexual dimorphism in chela size were due to differences in female, not male, chela size, and the species with greater sexual dimorphism in weaponry was significantly less aggressive overall; also, while paired and solitary males did not differ in residual chela size, for the species with greater sexual dimorphism, females carrying embryos had smaller residual chela sizes. These results suggest that understanding the sexual dimorphisms in weaponry and aggression in snapping shrimp requires understanding the relative costs and benefits of both in females as well as males.  相似文献   

19.
Sexual dimorphism in size and shape is common in many organisms, and is a key evolutionary feature. In this study, we analyzed morphometric data of the Jilin clawed salamander Onychodactylus zhangyapingi, an endemic Chinese salamander, to examine sexual size and shape dimorphism. The morphometric data included 14 characteristics of 13 females and 11 males and was analyzed using univariate and multivariate methods. Our results showed that sexual dimorphism occurs not only in body size, but also in body shape. Males have a longer snout-vent length than females, a rarely reported pattern of male-biased sexual size dimorphism. Females have a larger space between the axilla and groin than males, while males have longer and larger tails compared to females. The sexual dimorphism in body size and shape can be explained by existing theories, but there is little data for the mating system, behavior, reproduction, or ecology of O. zhangyapingi, so further studies are required.  相似文献   

20.
We tested the hypotheses that the Emei moustache toad (Leptobrachium boringii) exhibits resource defense polygyny and that combat led to the evolution of male-biased sexual size dimorphism. Between February and March of 2011 and 2012, 26 female and 55 male L. boringii from Mount Emei UNESCO World Heritage Site, Sichuan, China, were observed throughout the breeding season. Prior to the breeding season, males grow 10–16 keratinized maxillary nuptial spines, which fall off once the season has ended. Throughout this time, males construct and defend aquatic nests where they produce advertisement calls to attract females. In a natural setting, we documented 14 cases involving a total of 22 males where males used their moustaches for aggressive interaction, and nest takeover was observed on seven occasions. Males were also observed to possess injuries resulting from combat. Genetic analysis using microsatellite DNA markers revealed several cases of multiple paternity, both within nest and within clutch. This observation indicated that some alternative male reproductive strategy, such as satellite behaviour, is occurring, which may have led to the multiple paternity. Larger males were observed to mate more frequently, and in multiple nests, suggesting that females are selecting for larger males, or that larger males are more capable of defending high quality territories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号