首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Here, we report the isolation and characterization of a strong dominant-negative phytochrome A (phyA) mutation (phyA-300D) in Arabidopsis. This mutation carries a single amino acid substitution at residue 631, from valine to methionine (V631M), in the core region within the C-terminal half of PHYA. This PHYA core region contains two protein-interactive motifs, PAS1 and PAS2. Val-631 is located within the PAS1 motif. The phyA-V631M mutant protein is photochemically active and accumulates to a level similar to wild type in dark-grown seedlings. Overexpression of PHYA-V631M in a wild-type background results in a dominant-negative interference with endogenous wild-type phyA, whereas PHYA-V631M in a phyA null mutant background is inactive. To investigate the specificity of this mutation within the phytochrome family, the corresponding amino acid substitution (V664M) was created in the PHYTOCHROME B (PHYB) polypeptide. We found that the phyB-V664M mutant protein is physiologically active in phyB mutant and causes no interfering effect in a wild-type background. Together, our results reveal a unique feature in phyA signal propagation through the C-terminal core region.  相似文献   

3.
Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana. phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is mediated by a complex regulatory network. This includes light- and FHY1/FHL protein-dependent translocation of native phyA into the nucleus in vivo. It has also been shown that a short N-terminal fragment of phyA (PHYA406) is sufficient to phenocopy this highly regulated cellular process in vitro. To test the biological activity of this N-terminal fragment of phyA in planta, we produced transgenic phyA-201 plants expressing the PHYA406-YFP (YELLOW FLUORESCENT PROTEIN)-DD, PHYA406-YFP-DD-NLS (nuclear localization signal), and PHYA406-YFP-DD-NES (nuclear export signal) fusion proteins. Here, we report that PHYA406-YFP-DD is imported into the nucleus and this process is partially light-dependent whereas PHYA406-YFP-DD-NLS and PHYA406-YFP-DD-NES display the expected constitutive localization patterns. Our results show that these truncated phyA proteins are light-stable, they trigger a constitutive photomorphogenic-like response when localized in the nuclei, and neither of them induces proper phyA signaling. We demonstrate that in vitro and in vivo PHYA406 Pfr and Pr bind COP1, a general repressor of photomorphogenesis, and co-localize with it in nuclear bodies. Thus, we conclude that, in planta, the truncated PHYA406 proteins inactivate COP1 in the nuclei in a light-independent fashion.  相似文献   

4.
Survival of temperate-zone tree species under the normal summer-winter cycle is dependent on proper timing of apical growth cessation and cold acclimatization. This timing is primarily based on the perception of daylength, and through evolution many tree species have developed photoperiodic ecotypes which are closely adapted to the local light conditions. The longest photoperiod inducing growth cessation, the critical photoperiod, is inherited as a quantitative character. The phytochrome pigment family is the probable receptor of daylength, but the exact role of phytochrome and the physiological basis for the different responses between photoperiodic ecotypes are not known. This report shows for the first time that over-expression of the oat phytochrome A gene ( PHYA ) in a tree significantly changes the critical daylength and effectively prevents cold acclimatization. While the critical daylength for elongation growth in the wild-type of hybrid aspen ( Populus tremula × tremuloides ) was approximately 15 h, transgenic lines with a strong expression of the oat PHYA gene did not stop growing even under a photoperiod of 6 h. Quantitative analysis of gibberellins (GA) as well as indole-3-acetic acid (IAA) revealed that levels of these were not down-regulated under short days in the transgenic plants expressing high levels of oat PHYA , as in the wild-type. These results indicate that photoperiodic responses in trees might be regulated by the amount of PHYA gene expressed in the plants, and that the amount of phytochrome A (phyA) affects the metabolism of GAs and IAA.  相似文献   

5.
6.
Weller JL  Murfet IC  Reid JB 《Plant physiology》1997,114(4):1225-1236
In garden pea (Pisum sativum L.), a long-day plant, long photoperiods promote flowering by reducing the synthesis or transport of a graft-transmissible inhibitor of flowering. Previous physiological studies have indicated that this promotive effect is predominantly achieved through a response that requires long exposures to light and for which far-red (FR) light is the most effective. These characteristics implicate the action of phytochrome A (phyA). To investigate this matter further, we screened ethylmethane sulfonate-mutagenized pea seedlings for FR-unresponsive, potentially phyA-deficient mutants. Two allelic, recessive mutants were isolated and were designated fun1 for FR unresponsive. The fun1-1 mutant is specifically deficient in the PHYA apoprotein and has a seedling phenotype indistinguishable from wild type when grown under white light. However, fun1-1 plants grown to maturity under long photoperiods show a highly pleiotropic phenotype, with short internodes, thickened stems, delayed flowering and senescence, longer peduncles, and higher seed yield. This phenotype results in large part from an inability of fun1-1 to detect day extensions. These results establish a crucial role for phyA in the control of flowering in pea, and show that phyA mediates responses to both red and FR light. Furthermore, grafting and epistasis studies with fun1 and dne, a mutant deficient in the floral inhibitor, show that the roles of phyA in seedling deetiolation and in day-length detection are genetically separable and that the phyA-mediated promotion of flowering results from a reduction in the synthesis or transport of the floral inhibitor.  相似文献   

7.
The control of phytochrome A expression at the protein and mRNA levels was investigated in wild-type and phyB-1 mutant sorghum ( Sorghum bicolor [L.] Moench). PHYA mRNA abundance follows a diurnal rhythm in both genotypes, with maximal accumulation near the latter part of the light period. PHYA mRNA is more abundant in the phyB-1 mutant. The level of PHYA message correlates with both R : FR and photon flux density in wild-type, but only with photon flux density in the phyB-1 mutant. The differences in mRNA abundance are reflected in the level of phyA protein, which is elevated in the phyB-1 mutant and accumulates under low photon flux density. During de-etiolation, PHYA message accumulation is initially repressed solely by a very low fluence response (VLFR) presumably mediated by phyA. The phyB-mediated low fluence response maintains the repression of accumulation past the time controlled by the VLFR. With repetitive photoperiods, the transition from the etiolated growth form to autotrophic competency is accompanied by a transition from light-induced reduction of PHYA mRNA abundance to enhanced accumulation during the light period. The loss of phyB function allows partial de-repression of PHYA message accumulation under repetitive photoperiods, resulting in plants deficient in phyB but enriched in phyA. The modification of PHYA mRNA and protein levels in the phyB-1 mutant documented in this study may help clarify the molecular basis of the phyB-1 phenotype. The tailoring of phyA abundance in wild-type to the time of day and shade signals suggests a plastic role for this pigment in controlling development in light-grown plants.  相似文献   

8.
The photoreceptor phytochrome-A (phyA) regulates germination and seedling establishment by mediating very low fluence (VLFR) and far-red high irradiance (FR-HIR) responses in Arabidopsis thaliana. In darkness, phyA homodimers exist in the biologically inactive Pr form and are localized in the cytoplasm. Light induces formation of the biologically active Pfr form and subsequent rapid nuclear import. PhyA Pfr, in contrast to the Pr form, is labile and has a half-life of ~30 min. We produced transgenic plants in a phyA-201 null background that express the PHYA-yellow fluorescent protein (YFP) or the PHYA686-YFP-dimerization domain (DD) and PHYA686-YFP-DD-nuclear localization signal (NLS) or PHYA686-YFP-DD-nuclear exclusion signal (NES) fusion proteins. The PHYA686-YFP fusion proteins contained the N-terminal domain of phyA (686 amino acid residues), a short DD and the YFP. Here we report that (i) PHYA686-YFP-DD fusion protein is imported into the nucleus in a light-dependent fashion; (ii) neither of the PHYA686 fusion proteins is functional in FR-HIR and nuclear VLFR; and (iii) the phyA-dependent, blue light-induced inhibition of hypocotyl growth is mediated by the PHYA686-YFP-DD-NES but not by the PHYA686-YFP-DD-NLS and PHYA686-YFP-DD fusion proteins. We demonstrate that (i) light induces degradation of all PHYA N-terminal-containing fusion proteins and (ii) these N-terminal domain-containing fusion proteins including the constitutively nuclear PHYA686-YFP-DD-NLS and predominantly cytoplasmic PHYA686-YFP-DD-NES degrade at comparable rates but markedly more slowly than PHYA-YFP, whereas (iii) light-induced degradation of the native phyA is faster compared with PHYA-YFP.  相似文献   

9.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.  相似文献   

10.
Although the physiological functions of phytochrome A (PhyA) are now known, the distribution of endogenous PhyA has not been examined. We have visualized endogenous PhyA apoprotein (PHYA) by immunolabeling cryosections of pea tissue, using PHYA-deficient mutants as negative controls. By this method, we examined the distribution of PHYA in different tissues and changes in its intracellular distribution in response to light. In apical hook cells of etiolated seedlings, PHYA immunolabeling was distributed diffusely in the cytosol. Exposure to continuous far-red (cFR) light caused a redistribution of the immunolabeling to the nucleus, first detectable after 1.5 hr and greatest at 4.5 hr. During this time, the amounts of spectrally active phytochrome and PHYA did not decline substantially. Exposure to continuous red (cR) light or to a brief pulse of red light also resulted in redistribution of immunolabeling to the nucleus, but this occurred much more rapidly and with a different pattern of intranuclear distribution than it did in response to cFR light. Exposures to cR light resulted in loss of immunolabeling, which was associated with PHYA degradation. These results indicate that the light-induced intracellular location of PHYA is wavelength dependent and imply that this is important for PhyA activity.  相似文献   

11.
Flowering plant diversity now far exceeds the combined diversity of all other plant groups. Recently identified extant remnants of the earliest-diverging lines suggest that the first angiosperms may have lived in shady, disturbed, and moist understory habitats, and that the aquatic habit also arose early. This would have required the capacity to begin life in dimly lit environments. If so, evolution in light-sensing mechanisms may have been crucial to their success. The photoreceptor phytochrome A is unique among angiosperm phytochromes in its capacity to serve a transient role under conditions where an extremely high sensitivity is required. We present evidence of altered functional constraints between phytochrome A (PHYA) and its paralog, PHYC. Tests for selection suggest that an elevation in nonsynonymous rates resulted from an episode of selection along the branch leading to all angiosperm PHYA sequences. Most nucleotide sites (95%) are selectively constrained, and the ratio of nonsynonymous to synonymous substitutions on branches within the PHYA clade does not differ from the ratio on the branches in the PHYC clade. Thus, positive selection at a handful of sites, rather than relaxation of selective constraints, apparently has played a major role in the evolution of the photosensory domain of phytochrome A. The episode of selection occurred very early in the history of flowering plants, suggesting that innovation in phyA may have given the first angiosperms some adaptive advantage.  相似文献   

12.
Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6–12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.  相似文献   

14.
The sorghum [Sorghum bicolor (L.) Moench] phyB-1 mutant exhibits a constitutive shade-avoidance phenotype including excessive shoot elongation. It was previously shown that this mutant also overproduces ethylene. Although phytochrome B (phyB) is assumed to be the pigment most important in sensing and transducing shade signals, the sorghum phyB-1 mutant still responds to light signals characteristic of shade. Specifically, it was determined that the leaf blade : leaf sheath elongation of phyB-1 is responsive to red : far red (R : FR), but this response is opposite that of wild type (WT). Reducing the photosynthetic photon flux density (PPFD) strongly reduced the leaf blade : leaf sheath of WT but did not affect phyB-1, demonstrating a role for phyB in sensing PPFD. Using light-emitting diode (LED) lighting, it was found that WT ethylene production was increased with low R : FR while PPFD had no effect. Conversely, phyB-1 ethylene production increased only with high PPFD, high R : FR which was the treatment resulting in the least ethylene production by WT. Elevated ethylene production inhibits shoot elongation, but may contribute to shade avoidance by reducing leaf blade : leaf sheath elongation. Ethylene responses to light treatments designed to promote or reduce phytochrome A (phyA) activity, and the analysis of PHYA levels in the two cultivars suggests that phyA could be involved in transducing shade signals in light-grown sorghum. Responses potentially tranduced by phyA are elevated in phyB-1 which also over-expresses PHYA.  相似文献   

15.
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.  相似文献   

16.
Phytochrome is a key photoregulation pigment in plants which determines the strategy of their development throughout their life cycle. The major achievement in the recent investigations of the pigment is the discovery of its structural and functional heterogeneity: existence of a family of phytochromes (phyA-phyE) differing by the apoprotein was demonstrated. We approach this problem by investigating the chromophore component of the pigment with the use of the developed method of in vivo low-temperature fluorescence spectroscopy of phytochrome. In etiolated plants, phytochrome fluorescence was detected and attributed to its red-light absorbing form (Pr) and the first photoproduct (lumi-R), and a scheme of the photoreaction in phytochrome, a distinction of which is the activation barrier in the excited state, was put forward. It was found that the spectroscopic and photochemical characteristics of Pr depend on the plant species and phytochrome mutants and overexpressors used, on localization of the pigment in organs and tissues, plant age, effect of preillumination and other physiological factors. This variability of the parameters was interpreted as the existence of at least two phenomenological Pr populations, which differ by their spectroscopic characteristics and activation parameters of the Pr --> lumi-R photoreaction (in particular, by the extent of the Pr --> lumi-R photoconversion at low temperatures, gamma1): the longer-wavelength major and variable by its content in plant tissues Pr' with gamma1 = 0.5 and the shorter-wavelength minor relatively constant Pr" with gamma1 < or = 0.05. The analysis of the phytochrome mutants and overexpressors allows a conclusion that phytochrome A (phyA), which dominates in etiolated seedlings, is presented by two isoforms attributed to Pr' and Pr" (phyA' and phyA", respectively). Phytochrome B (phyB) accounts for less than 10% of the total phytochrome fluorescence and belongs to the Pr" type. It is also characterized by the relatively low extent of the Pr photoconversion into the far-red-light absorbing physiologically active phytochrome form, Pfr. Fluorescence of the minor phytochromes (phyC-phyE) is negligible. The recently discovered phytochrome of the cyanobacterium Synechocystis also belongs to the phenomenological Pr" type. PhyA' is a light-labile and soluble fraction, while phyA" is a relatively light-stable and, possibly, membrane (protein)-associated. Experiments with transgenic tobacco plants overexpressing full-length and C- and N-terminally truncated oat phytochrome A suggest that phyA' and phyA" might differ by the post-translational modification of the small N-terminal segment (amino acid residues 7-69) of the pigment. PhyA' is likely to be active in the de-etiolation processes while phyA" together with phyB, in green plants as revealed by the experiments on transgenic potato plants and phytochrome mutants of Arabidopsis and pea with altered levels of phytochromes A and B and modified phenotypes. And finally, within phyA', there are three subpopulations which are, possibly, different conformers of the chromophore. Thus, there is a hierarchical system of phytochromes which include: (i) different phytochromes; (ii) their post-translationally modified states and (iii) conformers within one molecular type. Its existence might be the rationale for the multiplicity of the photoregulation reactions in plants mediated by phytochrome.  相似文献   

17.
Isolation and characterization of rice phytochrome A mutants   总被引:19,自引:0,他引:19       下载免费PDF全文
To elucidate phytochrome A (phyA) function in rice, we screened a large population of retrotransposon (Tos17) insertional mutants by polymerase chain reaction and isolated three independent phyA mutant lines. Sequencing of the Tos17 insertion sites confirmed that the Tos17s interrupted exons of PHYA genes in these mutant lines. Moreover, the phyA polypeptides were not immunochemically detectable in these phyA mutants. The seedlings of phyA mutants grown in continuous far-red light showed essentially the same phenotype as dark-grown seedlings, indicating the insensitivity of phyA mutants to far-red light. The etiolated seedlings of phyA mutants also were insensitive to a pulse of far-red light or very low fluence red light. In contrast, phyA mutants were morphologically indistinguishable from wild type under continuous red light. Therefore, rice phyA controls photomorphogenesis in two distinct modes of photoperception--far-red light-dependent high irradiance response and very low fluence response--and such function seems to be unique and restricted to the deetiolation process. Interestingly, continuous far-red light induced the expression of CAB and RBCS genes in rice phyA seedlings, suggesting the existence of a photoreceptor(s) other than phyA that can perceive continuous far-red light in the etiolated seedlings.  相似文献   

18.
The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species.  相似文献   

19.
Phytochrome is a red (R)/far-red (FR) light-sensing photoreceptor that regulates various aspects of plant development. Among the members of the phytochrome family, phytochrome A (phyA) exclusively mediates atypical phytochrome responses, such as the FR high irradiance response (FR-HIR), which is elicited under prolonged FR. A proteasome-based degradation pathway rapidly eliminates active Pfr (the FR-absorbing form of phyA) under R. To elucidate the structural basis for the phyA-specific properties, we systematically constructed 16 chimeric phytochromes in which each of four parts of the phytochrome molecule, namely, the N-terminal extension plus the Per/Arnt/Sim domain (N-PAS), the cGMP phosphodiesterase/adenyl cyclase/FhlA domain (GAF), the phytochrome domain (PHY), and the entire C-terminal half, was occupied by either the phyA or phytochrome B sequence. These phytochromes were expressed in transgenic Arabidopsis thaliana to examine their physiological activities. Consequently, the phyA N-PAS sequence was shown to be necessary and sufficient to promote nuclear accumulation under FR, whereas the phyA sequence in PHY was additionally required to exhibit FR-HIR. Furthermore, the phyA sequence in PHY alone substantially increased the light sensitivity to R. In addition, the GAF phyA sequence was important for rapid Pfr degradation. In summary, distinct structural modules, each of which confers different properties to phyA, are assembled on the phyA molecule.  相似文献   

20.
Quinn MH  Oliverio K  Yanovsky MJ  Casal JJ 《Planta》2002,215(4):557-564
Several mutants with altered phytochrome A (phyA) signalling have been identified in screenings under continuous far-red light (FR). The latter protocol could preclude the identification of mutants affected in the signalling pathway that operates even under transient phyA activation, compared to the high-irradiance response (HIR) pathway that requires continuous FR. Since some photomorphogenic mutants show shoot-height phenotypes, the screening was conducted on dwarf mutants of Arabidopsis thaliana (L.) Heynh. from the ABRC stocks grown under hourly FR pulses. The dwarf mutant cp3 (compacta 3) showed normal hypocotyl length and folded cotyledons in darkness but enhanced hypocotyl-growth inhibition and cotyledon unfolding under pulsed FR. The HIR and the response mediated by phyB were not affected. Under pulsed FR, seed germination and blocking of greening upon transfer to white light were enhanced in cp3. PHYA levels were normal in cp3. The phenotype under pulsed FR but not the adult phenotype required phyA. We propose that CP3 is involved in the negative regulation of the signalling pathway that saturates with transient activation of phyA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号