首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
C Hatt  M E Ward    I N Clarke 《Nucleic acids research》1988,16(9):4053-4067
Chlamydia trachomatis serovar L1/440/LN possesses a 7498bp plasmid which was designated pLGV440. The plasmid was cloned at the BamH1 site of pAT153 into Escherichia coli and the recombinant plasmid was designated pCTL1. A detailed restriction endonuclease map of pCTL1 was constructed. A fragment of the chlamydial plasmid was shown to function as a promoter in E. coli when placed upstream of the lacZ gene. The entire plasmid was sequenced by the chain termination method. Open reading frames were identified from the resulting consensus sequence together with a candidate for the plasmid origin of replication consisting of four perfect tandem repeats of a 22bp sequence, an A:T rich sequence and an open reading frame which could generate a 34.8kdal product. The predicted polypeptide products of the open reading frames were compared by computer with all reported protein sequences. Homology of the predicted polypeptide product of an open reading frame to the E. coli dnaB protein and the analogous product of gene 12 of bacteriophage P22 is described.  相似文献   

5.
Abstract A gene ( fur ) for a Fur-like protein was identified on a 1.1 kb chromosomal DNA fragment of Staphylococcus epidermidis BN 280; the fur gene is followed by an open reading frame coding for the N-terminus of a putative Superoxide dismutase. Within the − 35 promoter region of both genes, a sequence motif was detected with low similarity to Fur-binding regulatory DNA segments, the so-called Fur boxes. Fur titration in Escherichia coli strain H1717 demonstrated that the E. coli Fur protein binds to the Fur box of the promoter region of the S. epidermidis fur gene. The S. epidermidis Fur protein was expressed in E. coli as indicated by the formation of inactive dimers with the chimeric repressor CI(N)-Fur(C) (Stojiljkovic I. and Hantke. K. (1995) Mol. Gen. Genet. 247, 199–205), but was not able to complement the Fur mutation in E. coli H1681.  相似文献   

6.
7.
Heat shock response of murine Chlamydia trachomatis.   总被引:18,自引:4,他引:14       下载免费PDF全文
  相似文献   

8.
A common plasmid of Chlamydia trachomatis   总被引:26,自引:0,他引:26  
L Palmer  S Falkow 《Plasmid》1986,16(1):52-62
  相似文献   

9.
G J Gray  R Kaul  K L Roy    W M Wenman 《Journal of bacteriology》1991,173(5):1663-1669
The cloning of a Chlamydia trachomatis eukaryotic cell-binding protein reported earlier from our laboratory (R. Kaul, K. L. Roy, and W. M. Wenman, J. Bacteriol. 169:5152-5156, 1987) represents an artifact generated by nonspecific recombination of chromosomal DNA fragments. However, the amino terminus of this plasmid-encoded fusion product demonstrated significant homology to Escherichia coli ribosomal protein L6. By using a 458-bp PstI-HindIII fragment of recombinant pCT161/18 (representing the 5' end of the cloned gene), we isolated and characterized a C. trachomatis homolog of the ribosomal protein L6 gene of E. coli. Sequence analysis of an 1,194-bp EcoRI-SacI fragment that encodes chlamydial L6 (designated CtaL6e) revealed a 552-bp open reading frame comprising 183 amino acids and encodes a protein with a molecular weight of 19,839. Interestingly, complete gene homology between C. trachomatis serovars L2 and J, each of which exists as a single copy per genome, was observed. Expression of a plasmid-encoded gene product is dependent on the lac promoter, since no product was obtained if the open reading frame was oriented in opposition to the lac promoter. Immunoblotting of purified ribosomes revealed functional, as well as antigenic, homology between the E. coli and C. trachomatis ribosomal L6 proteins.  相似文献   

10.
11.
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.  相似文献   

12.
The endotoxin of Chlamydia trachomatis L(2), the causative agent of lymphogranuloma venerum, has been described as an endotoxin with an atypical structure and weak stimulatory activity. It is, however, unclear whether chlamydial endotoxin plays a role in the stimulation of innate immune cells upon contact with the whole microorganism C. trachomatis L(2). We show here that chlamydial endotoxin and, as expected, Escherichia coli O55:B5 endotoxin depend on Toll-like receptor 4 without depending on Toll-like receptor 2 to stimulate bone marrow-derived dendritic cells to secrete tumor necrosis factor (TNF). In contrast, the whole microorganism C. trachomatis L(2) induces TNF secretion by innate immune cells independently of Toll-like receptor 4, while stimulation by E. coli O55:B5 depends on Toll-like receptor 4. Furthermore, although TNF secretion of the macrophage cell line RAW264.7 with chlamydial or E. coli O55:B5 endotoxin as well as with the bacterium E. coli O55:B5 is inhibited by the endotoxin-neutralizing compound polymyxin B, C. trachomatis L(2)-induced secretion of TNF cannot be reduced. In accordance with the literature, the potential of chlamydial endotoxin is more than 100-fold weaker than E. coli O55:B5 endotoxin on all cell types tested. We conclude that chlamydial endotoxin is unlikely to be involved in C. trachomatis L(2)-induced release of TNF by innate immune cells.  相似文献   

13.
14.
Organisms of Chlamydia spp. are obligate intracellular, gram-negative bacteria with a dimorphic developmental cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial anomaly refers to the fact that cell wall-active antibiotics inhibit Chlamydia growth and peptidoglycan (PG) synthesis genes are present in the genome, yet there is no biochemical evidence for synthesis of PG. In this work, we undertook a genetics-based approach to reevaluate the chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that catalyzes the first committed step of PG synthesis. The murA gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible, glucose-repressible ara promoter and transformed into Escherichia coli. After transduction of a lethal DeltamurA mutation into the strain, viability of the E. coli strain became dependent upon expression of the C. trachomatis murA. DNA sequence analysis of murA from C. trachomatis predicted a cysteine-to-aspartate change in a key residue within the active site of MurA. In E. coli, the same mutation has previously been shown to cause resistance to fosfomycin, a potent antibiotic that specifically targets MurA. In vitro activity of the chlamydial MurA was resistant to high levels of fosfomycin. Growth of C. trachomatis was also resistant to fosfomycin. Moreover, fosfomycin resistance was imparted to the E. coli strain expressing the chlamydial murA. Conversion of C. trachomatis elementary bodies to reticulate bodies and cell division are correlated with expression of murA mRNA. mRNA from murB, the second enzymatic reaction in the PG pathway, was also detected during C. trachomatis infection. Our findings, as well as work from other groups, suggest that a functional PG pathway exists in Chlamydia spp. We propose that chlamydial PG is essential for progression through the developmental cycle as well as for cell division. Elucidating the existence of PG in Chlamydia spp. is of significance for the development of novel antibiotics targeting the chlamydial cell wall.  相似文献   

15.
Using a functional cloning strategy with an Escherichia coli genomic plasmid library, we have identified a new family of sugar efflux proteins with three highly homologous members in the E. coli genome. In addition, two open reading frames, one present in Yersinia pestis and the other in Deinococcus radiodurans, appear to encode closely related proteins. An in vitro transport assay using inside-out membrane vesicles prepared from overproducing strains was used to demonstrate that members of this new family can efflux [14C]-lactose. As sugar efflux phenomena have been reported previously in several bacterial species including E. coli, the identification of a new family of sugar efflux proteins may help to reveal the physiological role of sugar efflux in metabolism. It is proposed that the E. coli members of this family, whose functions were previously unknown, be given the gene family designation SET for sugar efflux transporter.  相似文献   

16.
Escherichia coli K-12 lytic phage C1 was earlier isolated in our laboratory. Its adsorption is controlled by at least three bacterial genes: dcrA, dcrB, and btuB. Our results provide evidence that the dcrA gene located at 60 min on the E. coli genetic map is identical to the sdaC gene. This gene product is an inner membrane protein recently identified as a putative specific serine transporter. The dcrB gene, located at 76.5 min, encodes a 20-kDa processed periplasmic protein, as determined by maxicell analysis, and corresponds to a recently determined open reading frame with a previously unknown function. The btuB gene product is known to be an outer membrane receptor protein responsible for adsorption of BF23 phage and vitamin B12 uptake. According to our data the DcrA and DcrB proteins are not involved in these processes. However, the DcrA protein probably participates in some cell division steps.  相似文献   

17.
18.
E A Wagar  M J Giese  B Yasin    M Pang 《Journal of bacteriology》1995,177(17):5179-5185
Aminoacyl-tRNA synthetases specifically charge tRNAs with their cognate amino acids. A prototype for the most complex aminoacyl-tRNA synthetases is the four-subunit glycyl-tRNA synthetase from Escherichia coli, encoded by two open reading frames. We examined the glycyl-tRNA synthetase gene from Chlamydia trachomatis, a genetically isolated bacterium, and identified only a single open reading frame for the chlamydial homolog (glyQS). This is the first report of a prokaryotic glycyl-tRNA synthetase encoded by a single gene.  相似文献   

19.
The prokaryotic ribosomal operon, str, contains open reading frames for the two elongation factors, elongation factor G (EF-G) and elongation factor Tu (EF-Tu), and ribosomal proteins S7 and S12. The DNA sequence and predicted amino acid sequence for S7 from Chlamydia trachomatis are presented and compared with homologues from other prokaryotes. Also, the relationship of the S7 gene to the open reading frames for ribosomal protein S12 and EF-G is described. Significant amino acid homology is also noted when the amino-terminal sequence of chlamydial EF-G is compared with the cytoplasmic tetracycline resistance factors, tetM and tetO, from streptococci and Campylobacter jejuni. Related findings and possible resistance mechanisms for the newly recognized tetracycline-resistant clinical isolates of C. trachomatis are discussed.  相似文献   

20.
J N Engel  J Pollack  F Malik    D Ganem 《Journal of bacteriology》1990,172(10):5732-5741
Taking advantage of sequence conservation of portions of the alpha, beta, and beta' subunits of RNA polymerase of bacteria and plant chloroplasts, we have designed degenerate oligonucleotides corresponding to these domains and used these synthetic DNA sequences as primers in a polymerase chain reaction to amplify DNA sequences from the chlamydial genome. The polymerase chain reaction products were used as a probe to recover the genomic fragments encoding the beta subunit and the 5' portion of the beta' subunit from a library of cloned murine Chlamydia trachomatis DNA. Similar attempts to recover the alpha subunit were unsuccessful. Sequence analysis demonstrated that the beta subunit of RNA polymerase was located between genes encoding the L7/L12 ribosomal protein and the beta' subunit of RNA polymerase; this organization is reminiscent of the rpoBC operon of Escherichia coli. The C. trachomatis beta subunit overproduced in E. coli was used as an antigen in rabbits to make a polyclonal antibody to this subunit. Although this polyclonal antibody specifically immunoprecipitated the beta subunit from Chlamydia-infected cells, it did not immunoprecipitate core or holoenzyme. Immunoblots with this antibody demonstrated that the beta subunit appeared early in infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号