首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Genetic Fine Structure of the Leucine Operon in Salmonella   总被引:36,自引:1,他引:36       下载免费PDF全文
P. Margolin 《Genetics》1963,48(3):441-457
  相似文献   

2.
Three genes, thrA, thrB, and thrC, were previously defined and localized in the threonine locus of Escherichia coli K-12. thrA, thrB, and thrC specify the enzymes aspartokinase I-homoserine dehydrogenase I, homoserine kinase, and threonine synthetase, respectively. A complementation analysis of the threonine cluster using derivatives of a lambda phage carrying the threonine genes (lambdadthr(c)) demonstrates that: (i) thrB and thrC each consist of a single cistron; and (ii) thrA is composed of two cistrons, thrA(1) and thrA(2), although it specifies a single polypeptide chain. thrA(1) and thrA(2) correspond to aspartokinase I and homoserine dehydrogenase I, respectively. Their relative order is established. The demonstration of polar effects of mutations (nonsense or induced by phage Mu) in thrA and thrB is taken as evidence for the existence of a thrA thrB thrC operon, transcribed in this order.  相似文献   

3.
The levels of leucine-forming enzymes in Escherichia coli K-12 varied over a several thousand-fold range, depending upon conditions of growth. The highest levels were achieved by growing auxotrophs in a chemostat under conditions of leucine limitation. Under such conditions, enzyme levels were increased 45- to 90-fold relative to cells grown in minimal medium containing leucine (the latter values arbitrarily called 1). Leucine operon-specific messenger ribonucleic acid levels were elevated to about the same extent as enzyme levels in cells grown in a chemostat. Growth in media of greater complexity resulted in progressively lower levels of leucine-forming enzymes, reaching a value of less than 0.02 for growth in a medium containing tryptone broth and yeast extract. The levels of leucine operon-specified enzymes and messenger ribonucleic acid were also measured in strains containing about 25 copies of plasmid pCV1(ColE1-leu) per chromosome. For such strains grown in minimal medium, enzyme levels were proportional to the number of plasmids per cell. Furthermore, they followed the same trends as those described above upon derepression in a chemostat or upon repression following growth in rich media. Leucine messenger ribonucleic acid, measured both by pulse-labeling and hybridization-competition experiments, was roughly proportional to enzyme levels over this entire range. For a plasmid-containing strain grown in a chemostat under conditions of leucine limitation (about 100 plasmids per chromosome), about 27% of pulse-labeled ribonucleic acid was coded for by genes in or adjacent to the leucine operon, and 10% of the total protein was β-isopropylmalate dehydrogenase.  相似文献   

4.
Escherichia coli K-12 mutants resistant to growth inhibition by valine were isolated. These strains contained mutations in the ilvB operon effecting either the regulation of acetohydroxy acid synthase I or the sensitivity of the enzyme to end product inhibition by valine.  相似文献   

5.
6.
7.
Genetic Analysis of the Glutamate Permease in Escherichia coli K-12   总被引:2,自引:13,他引:2       下载免费PDF全文
The glutamate permeation system in Escherichia coli K-12 consists of three genes: gltC, gltS, and gltR. The genes gltC and gltS are very closely linked, and are located between the pyrE and tna loci, in the following order: tna, gltC, gltS, pyrE; gltR is located near the metA gene. The three glt genes constitute a regulatory system in which gltR is the regulator gene responsible for the formation of repressor, gltS is the structural gene of the glutamate permease, and gltC is most probably the operator locus. The synthesis of glutamate permease is partially repressed in wild-type K-12 strains, resulting in the inability of these strains to utilize glutamate as the sole source of carbon. Derepression due to mutation at the gltC locus enables growth on glutamate as a carbon source both at 30 C and at 42 C. Temperature-sensitive gltR mutants capable of utilizing glutamate for growth at 42 C but not at 30 C were found to be derepressed for glutamate permease when grown at 42 C and partially repressed (wild-type phenotype) upon growth at 30 C. These mutants produce an altered thermolabile repressor which can be inactivated by mild heat treatment (10 min at 44 C) in the absence of growth.  相似文献   

8.
Genetic Mapping of the minB Locus in Escherichia coli K-12   总被引:5,自引:4,他引:1       下载免费PDF全文
The minB (minicell production) locus of Escherichia coli K-12 was mapped by transduction using bacteriophage P1. minB is located at min 25.6, between purB (min 25.2) and dadR (min 25.8). The mapping was facilitated by the use of insertion zcf-236::Tn10, which is inserted at min 25.4.  相似文献   

9.
10.
Genetic analysis of the Escherichia coli K-12 srl region.   总被引:6,自引:1,他引:6       下载免费PDF全文
Specialized transducing lambda derivatives, deletion mapping, and Plkc transductional crosses have been used to analyze the genetic organization and regulation of the srl genes. Transducing phages obtained from a secondary site lambda insertion in srlA are of two types: lambdapsrlC1 and lambdaprecA are substituted in the b2 region of the lambda chromosome (galtype) and carry the srlC gene but not srlD; lambdapsrlD is substituted in the early region of the phage deoxyribonucleic acid (biotype) and carries the srlD gene but not srlC. The lambdapsrlC1 phage, which lysogenizes at attlambda, complements srlC mutants in trans, indicating that this gene codes for a diffusable positive regulatory element. The srl genes have been ordered relative to the cysC, recA, and alaS genes by two- and three-factor P1kc crosses. The order, cysC...srlD-srlA-srlC-recA-alaS, has been obtained. The srlA and srlD genes comprise an operon with srlD operator distal. From the secondary site lysogen, it has been possible to obtain deletion mutants of this region that are sensitive to ultraviolet light and are recombination deficient. Genetic evidence suggests that these deletions extend from srl into the recA gene.  相似文献   

11.
12.
Conventional methods for chromosomal mapping in Escherichia coli are (i) interruption of matings to obtain minimum marker entry times, (ii) linkage analysis of recombinants, and (iii) cotransduction. Method (i) has a resolution of about 0.5 min (5 x 10(4) nucleotides) and is not useful for distances less than about 1 min; methods (ii) and (iii) are capable of better resolution but are generally not very reproducible and no general theory is available for translating crossing-over and cotransduction frequencies into physical chromosomal distances. We found that when merozygotes are irradiated (X rays or ultraviolet light) soon after marker transfer, high linkage values (0.8 to 1.0) between nearby marker pairs decrease with radiation dose to 0.5. Our results are quantitatively consistent with the idea that radiations induce crossing-over lesions proportional to dose, and the number of such lesions between two markers is proportional to the physical separation of the markers in the range that can also be measured by interruption of mating (0.5 to 4.0 min). Additivity relations among markers are also satisfied. We used this technique to measure the distances (0.1 to 1.0 min) between several pairs of closely linked markers.  相似文献   

13.
14.
Summary A fine structure analysis of the threonine operon in Escherichia coli K-12 was performed by deletion mapping. Lambda transducing bacteriophages carrying various parts of the threonine operon were isolated from strains in which the lacZ gene was fused to a thr gene. We tested for recombination between deletions of the threonine promotor extending into the threonine operon, carried by the phage, and bacterial thr auxotrophs. The relative order of thrO (operator) mutations was established. We propose that an operator region is located between a promoter region and the structural genes. Mutations leading to the desensitization of the aspartokinase I-homoserine dehydrogenase I towards threonine were localized in two different regions of the thrA gene.  相似文献   

15.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

16.
Genetic analysis of the tdcABC operon of Escherichia coli K-12.   总被引:6,自引:5,他引:1       下载免费PDF全文
  相似文献   

17.
18.
Three independently isolated metK mutants have been shown to have leisions lying between speB and glc near 57 min on the Escherichia coli chromosome. Two deletions result in a lack of the metC gene product but neither extends into the metK glc region. The three metK mutations are recessive to the wild-type allele carried on the KLF16 episome.  相似文献   

19.
The kinetics of isoleucine, leucine, and valine transport in Escherichia coli K-12 has been analyzed as a function of substrate concentration. Such analysis permits an operational definition of several transport systems having different affinities for their substrates. The identification of these transport systems was made possible by experiments on specific mutants whose isolation and characterization is described elsewhere. The transport process with highest affinity was called the "very-high-affinity"process. Isoleucine, leucine, and valine are substrates of this transport process and their apparent K(m) values are either 10(-8), 2 x 10(-8), or 10(-7) M, respectively. Methionine, threonine, and alanine inhibit this transport process, probably because they are also substrates. The very-high-affinity transport process is absent when bacteria are grown in the presence of methionine, and this is due to a specific repression. Methionine and alanine were also found to affect the pool size of isoleucine and valine. Another transport process is the "high-affinity" process. Isoleucine, leucine, and valine are substrates of this transport process, and their apparent K(m) value is 2 x 10(-6) M for all three. Methionine and alanine cause very little or no inhibition, whereas threonine appears to be a weak inhibitor. Several structural analogues of the branched-chain amino acids inhibit the very-high-affinity or the high-affinity transport process in a specific way, and this confirms their existence as two separate entities. Three different "low-affinity" transport processes, each specific for either isoleucine or leucine or valine, show apparent K(m) values of 0.5 x 10(-4) M. These transport processes show a very high substrate specificity since no inhibitor was found among other amino acids or among many branched-chain amino acid precursors or analogues tried. The evolutionary significance of the observed redundancy of transport systems is discussed.  相似文献   

20.
The Rcs two-component pathway is involved in the regulation of capsule production in Escherichia coli. RcsC is predicted to be the sensor component of this two-component pathway, and in this study we present the first genetic data that support the role of RcsC as a hybrid sensor kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号