首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidative part of the catalytic cycle of the caa(3)-type cytochrome c oxidase from Thermus thermophilus was followed by time-resolved optical spectroscopy. Rate constants, chemical nature and the spectral properties of the catalytic cycle intermediates (Compounds A, P, F) reproduce generally the features typical for the aa(3)-type oxidases with some distinctive peculiarities caused by the presence of an additional 5-th redox-center-a heme center of the covalently bound cytochrome c. Compound A was formed with significantly smaller yield compared to aa(3) oxidases in general and to ba(3) oxidase from the same organism. Two electrons, equilibrated between three input redox-centers: heme a, Cu(A) and heme c are transferred in a single transition to the binuclear center during reduction of the compound F, converting the binuclear center through the highly reactive O(H) state into the final product of the reaction-E(H) (one-electron reduced) state of the catalytic site. In contrast to previous works on the caa(3)-type enzymes, we concluded that the finally produced E(H) state of caa(3) oxidase is characterized by the localization of the fifth electron in the binuclear center, similar to the O(H)→E(H) transition of the aa(3)-type oxidases. So, the fully-reduced caa(3) oxidase is competent in rapid electron transfer from the input redox-centers into the catalytic heme-copper site.  相似文献   

2.
Cytochrome c is the specific and efficient electron transfer mediator between the two last redox complexes of the mitochondrial respiratory chain. Its interaction with both partner proteins, namely cytochrome c(1) (of complex III) and the hydrophilic Cu(A) domain (of subunit II of oxidase), is transient, and known to be guided mainly by electrostatic interactions, with a set of acidic residues on the presumed docking site on the Cu(A) domain surface and a complementary region of opposite charges exposed on cytochrome c. Information from recent structure determinations of oxidases from both mitochondria and bacteria, site-directed mutagenesis approaches, kinetic data obtained from the analysis of isolated soluble modules of interacting redox partners, and computational approaches have yielded new insights into the docking and electron transfer mechanisms. Here, we summarize and discuss recent results obtained from bacterial cytochrome c oxidases from both Paracoccus denitrificans, in which the primary electrostatic encounter most closely matches the mitochondrial situation, and the Thermus thermophilus ba(3) oxidase in which docking and electron transfer is predominantly based on hydrophobic interactions.  相似文献   

3.
Flash photolysis of the membrane-bound cytochrome oxidase/carbon monoxide compound in the presence of oxygen at low temperatures and in the frozen state leads to the formation of three types of intermediates functional in electron transfer in cytochrome oxidase and reduction of oxygen by cytochrome oxidase. The first category (A) does not involve electron transfer to oxygen between -125 degrees and -105 degrees, and includes oxy compounds which are spectroscopically similar for the completely reduced oxidase (Cu1+alpha3(2+)-O2) or for the ferricyanide-pretreated oxidase (Cu2+alpha3(3+)-O2). Oxygen is readily dissociated from compounds of type A. The second category (B) involves oxidation of the heme and the copper moiety of the reduced oxidase to form a peroxy compound (Cu2+alpha 3(3+)-O2=or Cu2+alpha3(2+)-O2H2) in the temperature range from -105 degrees to -60 degrees. Above -60 degrees, compounds of type B serve as effective electron acceptors from cytochromes a, c, and c1. The third category (C) is formed above -100 degrees from mixed valency states of the oxidase obtained by ferricyanide pretreatment, and may involve higher valency states of the heme iron (Cu2+alpha3(4+)-O2=). These compounds act as electron acceptors for the respiratory chain and as functional intermediates in oxygen reduction. The remarkable features of cytochrome oxidase are its highly dissociable "oxy" compound and its extremely effective electron donor reaction which converts this rapidly to tightly bound reduced oxygen and oxidized oxidase.  相似文献   

4.
The hydrophobically guided complex formation between the Cu(A) fragment from Thermus thermophilus ba(3) terminal oxidase and its electron transfer substrate, cytochrome c(552), was investigated electrochemically. In the presence of the purified Cu(A) fragment, a clear downshift of the c(552) redox potential from 171 to 111mV±10mV vs SHE' was found. Interestingly, this potential change fully matches complex formation with this electron acceptor site in other oxidases guided by electrostatic or covalent interactions. Redox induced FTIR difference spectra revealed conformational changes associated with complex formation and indicated the involvement of heme propionates. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

5.
The paper presents a survey of time-resolved studies of charge translocation by cytochrome c oxidase coupled to transfer of the 1st, 2nd 3rd and 4th electrons in the catalytic cycle. Single-electron photoreduction experiments carried out with the A-class cytochrome c oxidases of aa(3) type from mitochondria, Rhodobacter sphaeroides and Paracoccus denitrificans as well as with the ba(3)-type oxidase from Thermus thermophilus indicate that the protonmotive mechanisms, although similar, may not be identical for different partial steps in the same enzyme species, as well as for the same single-electron transition in different oxidases. The pattern of charge translocation coupled to transfer of a single electron in the A-class oxidases confirms major predictions of the original model of proton pumping by cytochrome oxidase [Artzatbanov, V. Y., Konstantinov, A. A. and Skulachev, V.P. "Involvement of Intramitochondrial Protons in Redox Reactions of Cytochrome a." FEBS Lett. 87: 180-185]. The intermediates and partial electrogenic steps observed in the single-electron photoreduction experiments may be very different from those observed during oxidation of the fully reduced oxidase by O(2) in the "flow-flash" studies. .  相似文献   

6.
The kinetics of the oxidation of fully-reduced ba(3) cytochrome c oxidase from Thermus thermophilus by oxygen were followed by time-resolved optical spectroscopy and electrometry. Four catalytic intermediates were resolved during this reaction. The chemical nature and the spectral properties of three intermediates (compounds A, P and O) reproduce the general features of aa(3)-type oxidases. However the F intermediate in ba(3) oxidase has a spectrum identical to the P state. This indicates that the proton taken up during the P-->F transition does not reside in the binuclear site but is rather transferred to the covalently cross-linked tyrosine near that site. The total charge translocation associated with the F-->O transition in ba(3) oxidase is close to that observed during the F-->O transition in the aa(3) oxidases. However, the P(R)-->F transition is characterized by significantly lower charge translocation, which probably reflects the overall lower measured pumping efficiency during multiple turnovers.  相似文献   

7.
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the K and D proton pathways, a third proton pathway (Q) has been identified only in ba3-cytochrome c oxidase from Thermus thermophilus, and consists of residues that are highly conserved in all structurally known heme-copper oxidases. The Q pathway starts from the cytoplasmic side of the membrane and leads through the axial heme a3 ligand His-384 to the propionate of the heme a3 pyrrol ring A, and then via Asn-366 and Asp-372 to the water pool. We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS2-FTIR) spectroscopies to investigate the protonation/deprotonation events in the Q-proton pathway at ambient temperature. The photolysis of CO from heme a3 and its transient binding to CuB is dynamically linked to structural changes that can be tentatively attributed to ring A propionate of heme a3 (1695/1708 cm(-1)) and to deprotonation of Asp-372 (1726 cm(-1)). The implications of these results with respect to the role of the ring A propionate of heme a3-Asp372-H2O site as a proton carrier to the exit/output proton channel (H2O pool) that is conserved among all structurally known heme-copper oxidases, and is part of the Q-proton pathway in ba3-cytochrome c oxidase, are discussed.  相似文献   

8.
To probe the location of the quinol oxidation site and physical interactions for inter-subunit electron transfer, we constructed and characterized two chimeric oxidases in which subunit II (CyoA) of cytochrome bo-type ubiquinol oxidase from Escherichia coli was replaced with the counterpart (CaaA) of caa(3)-type cytochrome c oxidase from thermophilic Bacillus PS3. In pHNchi5, the C-terminal hydrophilic domain except a connecting region as to transmembrane helix II of CyoA was replaced with the counterpart of CaaA, which carries the Cu(A) site and cytochrome c domain. The resultant chimeric oxidase was detected immunochemically and spectroscopically, and the turnover numbers for Q(1)H(2) (ubiquinol-1) and TMPD (N,N, N',N'-tetramethyl-p-phenylenediamine) oxidation were 28 and 8.5 s(-1), respectively. In pHNchi6, the chimeric oxidase was designed to carry a minimal region of the cupredoxin fold containing all the Cu(A) ligands, and showed enzymatic activities of 65 and 5.1 s(-1), and an expression level better than that of pHNchi5. Kinetic analyses proved that the apparent lower turnover of the chimeric enzyme by pHNchi6 was due to the higher K(m) of the enzyme for Q(1)H(2) (220 microM) than that of cytochrome bo (48 microM), while in the enzyme by pHNchi5, both substrate-binding and internal electron transfer were perturbed. These results suggest that the connecting region and the C-terminal alpha(1)-alpha(2)-beta(11)-alpha(3) domain of CyoA are involved in the quinol oxidation and/or physical interactions for inter-subunit electron transfer, supporting our previous proposal [Sato-Watanabe, M., Mogi, T., Miyoshi, H., and Anraku, Y. (1998) Biochemistry 37, 12744-12752]. The close relationship of E. coli quinol oxidases to cytochrome c oxidase of Gram-positive bacteria like Bacillus was also indicated.  相似文献   

9.
Luna VM  Fee JA  Deniz AA  Stout CD 《Biochemistry》2012,51(23):4669-4676
We use a form of "freeze-trap, kinetic crystallography" to explore the migration of Xe atoms away from the dinuclear heme a(3)/Cu(B) center in Thermus thermophilus cytochrome ba(3) oxidase. This enzyme is a member of the heme-copper oxidase superfamily and is thus crucial for dioxygen-dependent life. The mechanisms involved in the migration of oxygen, water, electrons, and protons into and/or out of the specialized channels of the heme-copper oxidases are generally not well understood. Pressurization of crystals with Xe gas previously revealed a O(2) diffusion channel in cytochrome ba(3) oxidase that is continuous, Y-shaped, 18-20 ? in length and comprised of hydrophobic residues, connecting the protein surface within the bilayer to the a(3)-Cu(B) center in the active site. To understand movement of gas molecules within the O(2) channel, we performed crystallographic analysis of 19 Xe laden crystals freeze-trapped in liquid nitrogen at selected times between 0 and 480 s while undergoing outgassing at room temperature. Variation in Xe crystallographic occupancy at five discrete sites as a function of time leads to a kinetic model revealing relative degrees of mobility of Xe atoms within the channel. Xe egress occurs primarily through the channel formed by the Xe1 → Xe5 → Xe3 → Xe4 sites, suggesting that ingress of O(2) is likely to occur by the reverse of this process. The channel itself appears not to undergo significant structural changes during Xe migration, thereby indicating a passive role in this important physiological function.  相似文献   

10.
Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1?H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.  相似文献   

11.
Copper is essential for proper functioning of cytochrome c oxidases, and therefore for cellular respiration in eukaryotes and many bacteria. Here we show that a new periplasmic protein (PCu(A)C) selectively inserts Cu(I) ions into subunit II of Thermus thermophilus ba(3) oxidase to generate a native Cu(A) site. The purported metallochaperone Sco1 is unable to deliver copper ions; instead, it works as a thiol-disulfide reductase to maintain the correct oxidation state of the Cu(A) cysteine ligands.  相似文献   

12.
Amino acid sequence data have revealed that the bo-type ubiquinol oxidase from Escherichia coli is closely related to the eukaryotic aa3-type cytochrome c oxidases. In the cytochrome c oxidases, the reduction of oxygen to water occurs at a binuclear center comprised of heme a3 and Cu(B). In this paper, Fourier transform infrared (FTIR) spectroscopy of CO bound to the enzyme is used to directly demonstrate that the E. coli bo-type ubiquinol oxidase also contains a heme-copper binuclear center. Photolysis of CO ligated to heme o at low temperatures (e.g., 30 K) results in formation of a CO-Cu complex, showing that there is a heme-Cu(B) binuclear center similar to that formed by heme a3 and Cu(B) in the eukaryotic oxidase. It is further demonstrated that the cyoE gene product is required for the correct assembly of this binuclear center, although this polypeptide is not required as a component of the active enzyme in vitro. The cyoE gene product is homologous to COX10, a nuclear gene product from Saccharomyces cerevisiae, which is required for the assembly of yeast cytochrome c oxidase. Deletion of the cyoE gene results in an inactive quinol oxidase that is, however, assembled in the membrane. FTIR analysis of bound CO shows that Cu(B) is present in this mutant but that the heme-Cu(B) binuclear center is abnormal. Analysis of the heme content of the membrane suggests that the cyoE deletion results in the insertion of heme B (protoheme IX) in the binuclear center, rather than heme O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Luna VM  Chen Y  Fee JA  Stout CD 《Biochemistry》2008,47(16):4657-4665
Cytochrome ba3 is a cytochrome c oxidase from the plasma membrane of Thermus thermophilus and is the preferred terminal enzyme of cellular respiration at low dioxygen tensions. Using cytochrome ba 3 crystals pressurized at varying conditions under Xe or Kr gas, and X-ray data for six crystals, we identify the relative affinities of Xe and Kr atoms for as many as seven distinct binding sites. These sites track a continuous, Y-shaped channel, 18-20 A in length, lined by hydrophobic residues, which leads from the surface of the protein where two entrance holes, representing the top of the Y, connect the bilayer to the a3-CuB center at the base of the Y. Considering the increased affinity of O2 for hydrophobic environments, the hydrophobic nature of the channel, its orientation within the bilayer, its connection to the active site, its uniform diameter, its virtually complete occupation by Xe, and its isomorphous presence in the native enzyme, we infer that the channel is a diffusion pathway for O2 into the dinuclear center of cytochrome ba3. These observations provide a basis for analyzing similar channels in other oxidases of known structure, and these structures are discussed in terms of mechanisms of O2 transport in biological systems, details of CO binding to and egress from the dinuclear center, the bifurcation of the oxygen-in and water-out pathways, and the possible role of the oxygen channel in aerobic thermophily.  相似文献   

14.
X-ray structures of bovine heart cytochrome c oxidase with bound respiratory inhibitors (O(2) analogues) have been determined at 1.8-2.05? resolution to investigate the function of the O(2) reduction site which includes two metal sites (Fe(a3)(2+) and Cu(B)(1+)). The X-ray structures of the CO- and NO-bound derivatives indicate that although there are three possible electron donors that can provide electrons to the bound O(2), located in the O(2) reduction site, the formation of the peroxide intermediate is effectively prevented to provide an O(2)-bound form as the initial intermediate. The structural change induced upon binding of CN(-) suggests a non-sequential 3-electron reduction of the bound O(2)(-) for the complete reduction without release of any reactive oxygen species. The X-ray structure of the derivative with CO bound to Cu(B)(1+) after photolysis from Fe(a3)(2+) demonstrates weak side-on binding. This suggests that Cu(B) controls the O(2) supply to Fe(a3)(2+) without electron transfer to provide sufficient time for collection of protons from the negative side of the mitochondrial membrane. The proton-pumping pathway of bovine heart cytochrome c oxidase includes a hydrogen-bond network and a water channel located in tandem between the positive and negative side of the mitochondrial membrane. Binding of a strong ligand to Fe(a3) induces a conformational change which significantly narrows the water channel and effectively blocks the back-leakage of protons from the hydrogen bond network. The proton pumping mechanism proposed by these X-ray structural analyses has been functionally confirmed by mutagenesis analyses of bovine heart cytochrome c oxidase. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

15.
The respiratory heme-copper oxidases catalyze reduction of O(2) to H(2)O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa(3)-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba(3) oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H(+)/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba(3) oxidases with a focus on mechanisms of proton transfer and pumping.  相似文献   

16.
Bratton MR  Pressler MA  Hosler JP 《Biochemistry》1999,38(49):16236-16245
The catalytic core of cytochrome c oxidase is composed of three subunits: I, II, and III. Subunit III is a highly hydrophobic membrane protein that contains no redox centers; its role in cytochrome oxidase function is not obvious. Here, subunit III has been removed from the three-subunit mitochondrial-like oxidase of Rhodobacter sphaeroides by detergent washing. The resulting two-subunit oxidase, subunit III (-), is highly active. Ligand-binding analyses and resonance Raman spectroscopy show that its heme a(3)-Cu(B) active site is normal. However, subunit III (-) spontaneously and irreversibly inactivates during O(2) reduction. At pH 7.5, its catalytic lifetime is only 2% that of the normal oxidase. This suicide inactivation event primarily alters the active site. Its ability to form specific O(2) reduction intermediates is lost, and CO binding experiments suggest that the access of O(2) to reduced heme a(3) is inhibited. Reduced heme a accumulates in response to a decrease in the redox potential of heme a(3); electron transfer between the hemes is inhibited. Ligand-binding experiments and resonance Raman analysis show that increased flexibility in the structure of the active site accompanies inactivation. Cu(B) is partially lost. It is proposed that suicide inactivation results from the dissociation of a ligand of Cu(B) and that subunit III functions to prevent suicide inactivation by maintaining the structural integrity of the Cu(B) center via long-range interactions.  相似文献   

17.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

18.
This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.  相似文献   

19.
Formamide is a slow-onset inhibitor of mitochondrial cytochrome c oxidase that is proposed to act by blocking water movement through the protein. In the presence of formamide the redox level of mitochondrial cytochrome c oxidase evolves over the steady state as the apparent electron transfer rate from cytochrome a to cytochrome a(3) slows. At maximal inhibition cytochrome a and cytochrome c are fully reduced, whereas cytochrome a(3) and Cu(B) remain fully oxidized consistent with the idea that formamide interferes with electron transfer between cytochrome a and the oxygen reaction site. However, transient kinetic studies show that intrinsic rates of electron transfer are unchanged in the formamide-inhibited enzyme. Formamide inhibition is demonstrated for another member of the heme-oxidase family, cytochrome c oxidase from Bacillus subtilis, but the onset of inhibition is much quicker than for mitochondrial oxidase. If formamide inhibition arises from a steric blockade of water exchange during catalysis then water exchange in the smaller bacterial oxidase is more open. Subunit III removal from the mitochondrial oxidase hastens the onset of formamide inhibition suggesting a role for subunit III in controlling water exchange during the cytochrome c oxidase reaction.  相似文献   

20.
The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen is measured by transient absorption spectroscopy. The oxygen reaction is initiated by photolytic removal of CO from cytochrome oxidase, using a flash-pumped dye laser. The subsequent reaction of the cytochrome c-cytochrome oxidase complex with oxygen is reported at 550, 605, 744, and 830 nm at different cytochrome c:cytochrome oxidase ratios and different oxygen concentrations. In the absence of cytochrome c the time course of the reaction of the oxidase is well described by a triple exponential process at any of the measured wavelengths. The three processes are well resolved at high O2 levels (i.e. greater than 200 microM), where they reach first-order rate limits of 2.4 x 10(4), 7.5 x 10(3), and 650 s-1. When cytochrome c is added the oxidation of cytochrome a and one of the redox active cooper centers (CuA) are interrupted. The maximal effect of cytochrome c on the oxidation of the oxidase occurs at a c:aa3 ratio of 1. Cytochrome c reacts in a biphasic process with rates of up to 7 x 10(3) and 550 s-1 at high oxygen. The fast phase takes up 60% of the process, and this is independent of the cytochrome c:cytochrome oxidase ratio. The results are discussed in the context of a model in which electron entry into cytochrome oxidase from cytochrome c is via CuA, and cytochrome a functions to mediate electron transfer from CuA to the oxygen binding site. The role of CuA as initial electron acceptor in cytochrome c oxidase is related to its physical proximity to cytochrome c is the cytochrome c-cytochrome oxidase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号