首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
L Miele  B Strack  V Kruft  E Lanka 《DNA sequence》1991,2(3):145-162
The primase genes of RP4 are part of the primase operon located within the Tra1 region of this conjugative plasmid. The operon contains a total of seven transfer genes four of which (traA, B, C, D) are described here. Determination of the nucleotide sequence of the primase region confirmed the existence of an overlapping gene arrangement at the DNA primase locus (traC) with in-phase translational initiation signals. The traC gene encodes two acidic and hydrophilic polypeptide chains of 1061 (TraC1) and 746 (TraC2) amino acids corresponding to molecular masses of 116,721 and 81,647 Da. In contrast to RP4 the IncP beta plasmid R751 specifies four large primase gene products (192, 152, 135 and 83 kDa) crossreacting with anti-RP4 DNA primase serum. As shown by deletion analysis at least the 135 and 83 kDa polypeptides are two separate translational products that by analogy with the RP4 primases, arise from in-phase translational initiation sites. Even the smallest primase gene products TraC2 (RP4) and TraC4 (R751) exhibit primase activity. Nucleotide sequencing of the R751 primase region revealed the existence of three in-phase traC translational initiation signals leading to the expression of gene products with molecular masses of 158,950 Da, 134,476 Da, and 80,759 Da. The 192 kDa primase polypeptide is suggested to be a fusion protein resulting from an in frame translational readthrough of the traD UGA stopcodon. Distinct sequence similarities can be detected between the TraC proteins of RP4 and R751 gene products TraC3 and TraC4 and in addition between the TraD proteins of both plasmids. The R751 traC3 gene contains a stretch of 507 bp which is unrelated to RP4 traC or any other RP4 Tra1 gene.  相似文献   

4.
Conjugative transfer of DNA that occurs between bacteria also operates between bacteria and higher organisms. The transfer of DNA between Gram-negative bacteria requires initial contact by a sex pilus followed by DNA traversing four membranes (donor plus recipient) using a transmembrane pore. Accumulating evidence suggests that transfer of the T-DNA from Agrobacterium tumefaciens to plants may also occur via a conjugative mechanism. The virB operon of the Ti plasmid exhibits close homologies to genes that are known to encode the pilin subunits and pilin assembly proteins. The proteins encoded by the PilW operon of IncW plasmid R388 share strong similarities (average similarity=50.8%) with VirB proteins. Similarly, the TraA, TraL and TraC proteins of IncF plasmid F have similarities to VirB2, VirB3 and VirB4 respectively (average similarity = 45.3%). VirB2 protein (12.3 kDa) contains a signal peptidase-I cleavage sequence that generates a polypeptide of 7.2 kDa. Likewise, the 12.8 kDa propilin protein TraA of plasmid F also possesses a peptidase-I cleavage site that generates the 7.2 kDa pilin structural protein. Similar amino acid sequences of the conjugative transfer genes of F, R388 as well as plasmid RP4 and the genes of the ptl operon of Bortedella pertussis suggest the existence of a superfamily of transmembrane proteins adapted to the promiscuous transfer of DNA-protein complexes.  相似文献   

5.
S K Farrand  I Hwang    D M Cook 《Journal of bacteriology》1996,178(14):4233-4247
The Ti plasmids of Agrobacterium tumefaciens encode two transfer systems. One mediates the translocation of the T-DNA from the bacterium to a plant cell, while the other is responsible for the conjugal transfer of the entire Ti plasmid from one bacterium to another. The determinants responsible for conjugal transfer map to two regions, tra and trb, of the nopaline-type Ti plasmid pTiC58. By using transposon mutagenesis with Tn3HoHo1, we localized the tra determinants to an 8.5-kb region that also contains the oriT region. Fusions to lacZ formed by transposon insertions indicated that this region is expressed as two divergently transcribed units. We determined the complete nucleotide sequence of an 8,755-bp region of the Ti plasmid encompassing the transposon insertions defining tra. The region contains six identifiable genes organized as two units divergently transcribable from a 258-bp inter-genic region that contains the oriT site. One unit encodes traA, traF, and traB, while the second encodes traC, traD, and traG. Reporter insertions located downstream of both sets of genes did not affect conjugation but were expressed, suggesting that the two units encode additional genes that are not involved in transfer under the conditions tested. Proteins of the predicted sizes were expressible from traA, traC, traD, and traG. The products of several Ti plasmid tra genes are related to those of other conjugation systems. The 127-kDa protein expressed from traA contains domains related to MobA of RSF1O1O and to the helicase domain of TraI of plasmid F. The translation product of traF is related to TraF of RP4, and that of traG is related to TraG of RP4 and to VirD4 of the Ti plasmid T-DNA transfer system. Genetic analysis indicated that at least traG and traF are essential for conjugal transfer, while sequence analysis predicts that traA also encodes an essential function. traB, while not essential, is required for maximum frequency of transfer. Patterns of sequence relatedness indicate that the oriT and the predicted cognate site-specific endonuclease encoded by traA share lineage with those of the transfer systems of RSF1010 and plasmid F, while genes of the Ti plasmid encoding other essential tra functions share common ancestry with genes of the RP4 conjugation system.  相似文献   

6.
The bacteriocin encoding plasmid pPD1 from Enterococcus faecalis is involved in a mating response to the sex pheromone cPD1 produced by recipient bacterial cells devoid of pPD1. Previous studies showed that cPD1 is internalized into donor cells in a process in which TraC plays the role of cell surface pheromone receptor. Inside the recipient cells, the pheromone binds to the plasmid-encoded cytoplasmic protein TraA, able to recognize specific DNA sequences and to modulate the conjugation process. To avoid self-induction of the conjugation process, donor cells produce the inhibitor iPD1, which competes with cPD1. This study was designed to produce recombinant TraA and TraC in a functionally active state and to evaluate their main functional properties. We have isolated the sequences encoding TraA and TraC from the plasmid pPD1 and cloned them in suitable expression vectors. The two recombinant proteins were successfully obtained in a soluble form using Escherichia coli as expression host and a T7 inducible expression system. TraC and TraA were purified to homogeneity by three or two chromatographic steps, respectively, leading to a final yield up to 4 mg/l of cell culture for TraC and up to 10 mg/l of cell culture for TraA. The ability of TraA and TraC to bind the specific pheromone and inhibitor peptides has been assessed by means of ESI-mass spectrometry. Moreover, the ability of recombinant TraA to bind DNA has been demonstrated by means of electrophoretic mobility shift assay. Overall these results are consistent with the heterologously expressed TraC and TraA being functionally active.  相似文献   

7.
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.  相似文献   

8.
We have determined the DNA sequences of two unlinked regions of octopine-type Ti plasmids that contain genes required for conjugal transfer. Both regions previously were shown to contain sequences that hybridize with tra genes of the nopaline-type Ti plasmid pTiC58. One gene cluster (designated tra) contains a functional oriT site and is probably required for conjugal DNA processing, while the other gene cluster (designated trb) probably directs the synthesis of a conjugal pilus and mating pore. Most predicted Tra and Trb proteins show relatively strong sequence similarity (30 to 50% identity) to the Tra and Trb proteins of the broad-host-range IncP plasmid RP4 and show significantly weaker sequence similarity to Vir proteins found elsewhere on the Ti plasmid. An exception is found in the Ti plasmid TraA protein, which is predicted to be a bifunctional nickase-helicase that has no counterpart in IncP plasmids or among Vir proteins but has homologs in at least six other self-transmissible and mobilizable plasmids. We conclude that this Ti plasmid tra system evolved by acquiring genes from two or three different sources. A similar analysis of the Ti plasmid vir region indicates that it also evolved by appropriating genes from at least two conjugal transfer systems. The widely studied plasmid pTiA6NC previously was found to be nonconjugal and to have a 12.65-kb deletion of DNA relative to other octopine-type Ti plasmids. We show that this deletion removes the promoter-distal gene of the trb region and probably accounts for the inability of this plasmid to conjugate.  相似文献   

9.
Abstract The virB operon of the Agrobacterium tumefaciens Ti plasmid encodes 11 proteins. Specific antisera to VirB2, VirB3 and VirB9 were used to locate these virulence proteins in the A. tumefaciens cell. Immunoblot analysis located VirB2 protein to the inner and outer membranes; VirB3 and VirB9 were likewise associated with both membranes, but mainly in the outer membrane. VirB2 is processed from a 12.3-kDa protein into a 7.2-kDa polypeptide. Such sized protein results from cleavage at residue Ala47, upstream of which two additional alanine residues Ala45-Ala46 are contained and bearing resemblance to a signal peptide peptidase-I cleavage sequence. VirB2 and VirB3 sequences are strikingly similar to the pilin biosynthetic proteins TraA and TraL encoded by the tra operon of F and R1-19 plasmids. Since traA encodes a propilin that is cleaved into a 7.2-kDa conjugative pilin product and since this cleavage site is present in both TraA and VirB2, we propose that virB2 encodes a pilin-like protein which together with VirB3 and VirB9 as well as other VirB proteins may be used for interkingdom T-DNA transfer between bacteria and plants.  相似文献   

10.
11.
12.
13.
14.
15.
Analysis of the transfer region of the Streptomyces plasmid SCP2*   总被引:6,自引:4,他引:2  
plJ903, a bifunctional derivative of the 31.4 kb low-copy number, conjugative Streptomyces plasmid SCP2, was mutagenized in Streptomyces lividans using Tn4560. Mutant plasmids differing in their transfer frequencies, chromosome mobilization abilities, pock formation, and complementation properties were isolated. The mutations defined five transfer-related genes, traA, traB, traC, traD and spd, clustered in a region of 9 kb. The deduced sequences of the putative TraA and TraB proteins showed no overall similarity to known protein sequences, but the phenotype of traA mutant plasmids and sequence motifs in the putative TraA protein suggested that it might be a DNA helicase.  相似文献   

16.
Genetic and biochemical characterization of TraA, the relaxase of symbiotic plasmid pRetCFN42d from Rhizobium etli, is described. After purifying the relaxase domain (N265TraA), we demonstrated nic binding and cleavage activity in vitro and thus characterized for the first time the nick site (nic) of a plasmid in the family Rhizobiaceae. We studied the range of N265TraA relaxase specificity in vitro by testing different oligonucleotides in binding and nicking assays. In addition, the ability of pRetCFN42d to mobilize different Rhizobiaceae plasmid origins of transfer (oriT) was examined. Data obtained with these approaches allowed us to establish functional and phylogenetic relationships between different plasmids of this family. Our results suggest novel characteristics of the R. etli pSym relaxase for previously described conjugative systems, with emphasis on the oriT cis-acting preference of this enzyme and its possible biological relevance.  相似文献   

17.
N Furuya  T Nisioka    T Komano 《Journal of bacteriology》1991,173(7):2231-2237
Two transfer genes of IncI1 plasmid R64, tentatively designated nikA and nikB, were cloned and sequenced. They are located adjacent to the origin of transfer (oriT) and appear to be organized into an operon, which we call the oriT operon. On the basis of the DNA sequence, nikA and nikB were concluded to encode proteins with 110 and 899 amino acid residues, respectively. Complementation analysis indicated that these two genes are indispensable for the transfer of R64 but are not required for the mobilization of ColE1. By the maxicell procedure, the product of nikA was found to be a 15-kDa protein. On treating a cleared lysate prepared from cells harboring a plasmid containing oriT, nikA, and nikB with sodium dodecyl sulfate or proteinase K, superhelical plasmid DNA in the cleared lysate was converted to an open circular form (relaxation). Relaxation of plasmid DNA was found to require the oriT sequence in cis and the nikA and nikB sequences in trans. It would thus follow that the products of nikA and nikB genes form a relaxation complex with plasmid DNA at the oriT site.  相似文献   

18.
Two novel Enterococcus faecalis-Escherichia coli shuttle vectors that utilize the promoter and ribosome binding site of bacA on the E. faecalis plasmid pPD1 were constructed. The vectors were named pMGS100 and pMGS101. pMGS100 was designed to overexpress cloned genes in E. coli and E. faecalis and encodes the bacA promoter followed by a cloning site and stop codon. pMGS101 was designed for the overexpression and purification of a cloned protein fused to a Strep-tag consisting of 9 amino acids at the carboxyl terminus. The Strep-tag provides the cloned protein with an affinity to immobilized streptavidin that facilitates protein purification. We cloned a promoterless beta-galactosidase gene from E. coli and cloned the traA gene of the E. faecalis plasmid pAD1 into the vectors to test gene expression and protein purification, respectively. beta-Galactosidase was expressed in E. coli and E. faecalis at levels of 10(3) and 10 Miller units, respectively. By cloning the pAD1 traA into pMGS101, the protein could be purified directly from a crude lysate of E. faecalis or E. coli with an immobilized streptavidin matrix by one-step affinity chromatography. The ability of TraA to bind DNA was demonstrated by the DNA-associated protein tag affinity chromatography method using lysates prepared from both E. coli and E. faecalis that overexpress TraA. The results demonstrated the usefulness of the vectors for the overexpression and cis/trans analysis of regulatory genes, purification and copurification of proteins from E. faecalis, DNA binding analysis, determination of translation initiation site, and other applications that require proteins purified from E. faecalis.  相似文献   

19.
The mechanism of DNA transmission between distinct organisms has remained a subject of long-standing interest. Agrobacterium tumefaciens mediates the transfer of plant oncogenes in the form of a 25-kb T-DNA sector of a resident Ti plasmid. A growing body of evidence leading to the elucidation of the mechanism involved in T-DNA transfer comes from studies on the vir genes contained in six major operons that are required for the T-DNA transfer process. Recent comparative amino acid sequence studies of the products of these vir genes have revealed interesting similarities between Tra proteins of Escherichia coli F factor, which are involved in the biosynthesis and assembly of a conjugative pilus, and VirB proteins encoded by genes of the virB operon of A. tumefaciens pTiC58. We have previously identified VirB2 as a pilin-like protein with processing features similar to those of TraA of the F plasmid and have shown that VirB2 is required for the biosynthesis of pilin on a flagella-free Agrobacterium strain. In the present work, VirB2 is found to be processed and localized primarily to the cytoplasmic membrane in E. coli. Cleavage of VirB2 was predicted previously to occur between alanine and glutamine in the sequence -Pro-Ala-Ala-Ala-Glu-Ser-. This peptidase cleavage sequence was mutated by an amino acid substitution for one of the alanine residues (D for A at position 45 [A45D]), by deletion of the three adjacent alanines, and by a frameshift mutation 22 bp upstream of the predicted Ala-Glu cleavage site. With the exception of the frameshift mutation, the alanine mutations do not prevent VirB2 processing in E. coli, while in A. tumefaciens they result in VirB2 instability, since no holo- or processed protein is detectable. All of the above mutations abolish virulence. The frameshift mutation abolishes processing in both organisms. These results indicate that VirB2 is processed into a 7.2-kDa structural protein. The cleavage site in E. coli appears to differ from that predicted in A. tumefaciens. Yet, the cleavage sites are relatively close to each other since the final cleavage products are similar in size and are produced irrespective of the length of the amino-terminal portion of the holoprotein. As we observed previously, the similarity between the processing of VirB2 in A. tumefaciens and the processing of the propilin TraA of the F plasmid now extends to E. coli.  相似文献   

20.
Plasmids containing a direct repeat of plasmid R388 oriT are capable of site-specific recombination, which results in deletion of the intervening DNA. This reaction occurs in the presence, but not in the absence, of the region of R388 implicated in DNA processing during conjugation. This region contains three genes, trwA, trwB, and trwC. By using mutants of each of the three genes, it was demonstrated that only trwC is required for the oriT-specific recombination. Further analysis showed that the N-terminal 272 amino acids of the protein are sufficient to catalyze recombination. TrwC is also capable of promoting intermolecular recombination between two plasmids containing oriT, suggesting that double-strand breaks in both plasmid DNAs are involved in the process. Additionally, intramolecular recombination between R388 oriT and R46 oriT did not occur in the presence of both nickases. This suggests that the half-reactions at each oriT are not productive if they occur separately; therefore, an interaction between the recombination complexes formed at each recombining site is required. This is the first report in which a nicking-closing enzyme involved in conjugal DNA transfer promotes oriT-specific recombination of double-stranded DNA in the absence of conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号