首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nineteen accessions of diploid Medicago sativa L. belonging to the four subspecies sativa, caerula, falcata and xvaria were screened for their ability to produce somatic embryos on hypocotyl-derived callus. Two medium protocols were used in this study, a three-step sequence with exposure of the callus cultures to a high 2,4-D concentration and a two-step sequence without exposure to a high 2,4-D concentration. Considerable variation for callus proliferation was observed. In general, the diploid M. sativa accessions showed poor regenerability and it was not possible to correlate high regeneration frequencies with a particular germplasm source. It was, however, possible to identify regenerable genotypes in all four subspecies. One falcata accession produced somatic embryos on the callus induction media at high frequencies. This response was also obtained with a few genotypes from one xvaria accession. All regenerable plants were maintained as shoot cultures and were able to form somatic embryos on petiole-derived calli.Abbreviations BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - 2iP iso-pentyladenine - NAA -naphthaleneacetic acid Contribution No. 772 Ottawa Research Station  相似文献   

2.
The influence of exogenous gibberellic acid (GA3) andpaclobutrazol, an inhibitor of gibberellin biosynthesis, on growth of callusandsomatic embryogenesis in petiole-derived tissue cultures of Medicagosativa L. has been investigated. GA3 (0.5–500M) or paclobutrazol(5–100 M) were added to either an induction (with 2,4 Dand kinetin) or a differentiation medium (without plant growth regulators).Gibberellin A3, applied during the induction as well as thedifferentiation stage, reduced the weight of callus and increased the number ofsomatic embryos in Medicago sativa L. tissue cultures.Somatic embryo production was increased more by the presence of exogenousGA3 in the differentiation than induction medium. The inclusion ofpaclobutrazol in the induction or differentiation medium caused the inhibitionof callus growth and embryo production. Callus growth was much less affectedthan embryogenesis. These results indicate that gibberellins are beneficial forboth embryoinduction and formation. The level of endogenous gibberellins is presumablysufficient for callus induction and growth. However, it seems not optimal forthe induction and particularly for the differentiation of embryos.  相似文献   

3.
枸杞体细胞胚发生过程中内源多胺代谢动态的研究   总被引:7,自引:0,他引:7  
完全脱分化的枸杞继代愈伤组织在转入分化培养后第1天就开始启动分化,接着体细胞转变为胚性细胞,继而分裂形成多细胞原胚,球形胚和成熟胚等。与此同时,Put含量迅速上升形成第1个峰值,随后有所下降,但到多细胞原胚期Put含量又上升,并达到最高峰,为对照的6倍,Spd只在胚性细胞分化早期出现,Spm仅在体细胞胚发育晚期存在,外源Put不仅可提高体细胞胚发生频率,而且使3种内源多胺含量均有所提高,加入多胺生物合成抑制剂DFMA后,多胺水平下降,体细胞胚发生几乎完全被抑制。补充外源Put后,多胺的生物合成得到部分恢复,DFMA对体细胞胚发生的抑制效应也被部分解除。结果表明,维持一定量的多胺水平是枸杞体细胞胚发生的必要因素。  相似文献   

4.
A novel, genotype dependent system for rapid high frequency somatic embryogenesis in Medicago sativa L. was developed in which the first embryos are visible as early as 15 days after the explant (hypocotyl, petiole, leaf) is put into culture. The simplest method involves culture of the explants on a single Murashige and Skoog (MS) medium supplemented with 2 g l−1 casein hydrolysate, 9 μ M 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.2 μ M kinetin. An efficient two-step, two-medium system was developed to allow separation of the induction and differentiation phases. The explants are cultured on MS with 22.6 μ M 2,4-D and 4.7 μ M kinetin (induction medium) for 10 days and then on basal MS for 20 days. Embryo yields and embryo conversion to plantlets were strongly dependent on the 2,4-D and kinetin concentrations in the induction medium. Both petiole and leaf explants were highly embryogenic and very little callus proliferation occurred when this method was used. Selected clones from three ssp. falcata -based M. sativa cultivars showed a response very similar to the highly regenerable falcata clone F1.1, but it was not possible to produce large numbers of somatic embryos in tissue cultures of cv. Regen S, which is used in most M. sativa tissue culture research, with this procedure. These results suggest that there are two distinct developmental pathways for somatic embryogenesis in M. sativa , with Regen S cultures requiring extensive dedifferentiation during a prolonged callus phase, while the genotypes described in this report have no such requirement.  相似文献   

5.
We describe a simple and efficient protocol for regeneration-transformation of two diploid Medicago lines: the annual M. truncatula R108-1(c3) and the perennial M. sativa ssp. falcata (L.) Arcangeli PI.564263 selected previously as highly embryogenic genotypes. Here, embryo regeneration of R108-1 to complete plants was further improved by three successive in vitro regeneration cycles resulting in the line R108-1(c3). Agrobacterium tumefaciens-mediated transformation of leaf explants was carried out with promoter-gus constructs of two early nodulins (MsEnod12A and MsEnod12B) and one late nodulin (Srglb3). The transgenic plants thus produced on all explants within 3–4 months remained diploid and were fertile. This protocol appears to be the most efficient and fastest reported so far for leguminous plants. Received: 18 March 1997 / Revision received: 25 June 1997 / Accepted: 15 July 1997  相似文献   

6.
Endogenous indole-3-acetic acid, abscisic acid and cytokinins (zeatin, zeatin riboside, N-isopentenyladenine and N-isopentenyladenosine) were evaluated in initial explants (leaves) of in vitro propagated plants of alfalfa ( Medicago falcata L.) lines varying in embryogenic capacity and during the somatic embryogenesis process. Fast embryo-genic induction was correlated with high IAA and low ABA levels in the initial explants. No significant differences were observed in the cytokinin contents. Our results suggest that a certain hormone balance is necessary to allow the expression of the embryogenic potential. The consistent stages of the direct somatic embryogenesis are also characterized by changes in hormonal levels.  相似文献   

7.
Three methods of increasing the productivity of somatic embryogenesis in Medicago sativa L. were investigated. In the basic procedure, somatic embryos were initiated from young petioles and carried through several phases: callus formation, suspension culture, selection of the embryogenic fraction by sieving, development, maturation, desiccation and storage. The suspensions were normally separated into three fractions by sieving. Fraction I (<200 m) containing nonembryogenic cells or cell clusters was discarded. Fraction II (200–500 m) consisting of embryogenic cell clusters was collected for embryo development and maturation. Fraction III (over 500 M) containing the mixture of petiole residues with large pieces of calli and globular somatic embryos was usually discarded. Several methods to scale-up the suspension phase were unsuccessful. Direct subculture of the entire suspension by the addition of fresh liquid medium resulted in the loss of embryogenic capacity by the third subculture. Subculture of fraction II decreased embryogenic cell mass, and hence reduced total productivity. The recycling of fraction III back to fresh B5g liquid medium resulted in high productivity in the first culture but further subculture of this fraction resulted in a rapid decline in the embryogenic capacity.As an alternative, somatic embryos from the first tissue culture cycle were also used as explants for the initiation of secondary embryogenic callus. The embryogenic capacity of these somatic embryo explants declined rapidly as they matured. More than 100 secondary somatic embryos could be induced from embryo explants removed from development medium at 10 days after sieving the suspension, but only 40 somatic embryos were produced from each mature somatic embryo explant, and 13 from desiccated embryos. The secondary somatic embryos were comparable to the primary embryos in quality according to germination tests. The implications of the results to the efficiency of somatic embryo production of Medicago are discussed.Abbreviations ABA abscisic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - DAS days after sieving - PPF photosynthetic photon flux density - SE somatic embryo  相似文献   

8.
A number of medium constituents were evaluated in an attempt to improve somatic embryo production in Medicago arborea ssp. arborea, using cotyledons, petioles and leaves as explants. Two culture steps were applied: in the first stage (2 months), Murashige–Skoog (MS) medium was used, containing 2,4 dichlorophenoxyacetic acid (9M 2,4-D) and kinetin (9 M KIN) together with different nitrogen sources (alanine, glutamine, proline or tryptophan (2.5 and 5 mM); casein hydrolysate (100, 500 and 1000 mg l–1; nitrate (4.69 and 9.39 mM) or casein hydrolysate (100 mg l–1) and nitrate (4.69 mM)), polyalcohols (mannitol at 164 and 328 mM or sorbitol at 219 and 438 mM), sucrose (43.8 and 175.4 mM) or calcium (1.5 and 6 mM). In the second stage (3 months of cultivation), calli were transferred to a kinetin-free MS medium with 2,4-D (2.25 M) only. The inclusion of proline (2.5 mM) was the most effective treatment for the induction of somatic embryos, with the petiole being the best explant. Treatment with casein hydrolysate (100 mg l–1) also improved the embryonic efficiency. The rest of the treatments neither affect nor inhibit the embryonic response.A special treatment with sorbitol (219 mM) in the second stage of cultivation produced a slight increase in embryogenesis, but less than that obtained with proline.  相似文献   

9.
The effect of exogenously supplied reduced nitrogen and sucrose on high-frequency somatic embryogenesis in petiole-derived tissue cultures of a diploid and a tetraploid regenerable clone of Medicago sativa ssp. falcata was investigated. There was an absolute requirement for ammonium during embryo induction and differentiation, with 5mM being the optimum for induction and 10–20 mM the optimum for differentiation of somatic embryos. Exogenous amino acids were not essential for differentiation and often even inhibitory, except 1 or 2 g/l casein hydrolysate or 4.4 mM glutamine with 3.1 mM proline which, under certain conditions, resulted in increases of 20–30% in the number of embryos obtained. High and low sucrose concentrations inhibited somatic embryogenesis and there was no reason to deviate from the 3% (0.088 M) sucrose level commonly used in plant tissue culture media. Selected clones from three M. sativa cultivars showed a response similar to the highly regenerable ssp. falcata clone F1.1.  相似文献   

10.
From anthesis to mature seed formation, burrs from cross-pollinated adult Castanea sativa Miller trees were characterized and seven developmental stages defined based on macro and micromorphological traits. In order to get an insight into the involvement of epigenetic mechanisms in sexual embryogenesis and to define somatic embryogenesis induction capability, global DNA methylation and the somatic embryogenic competence were quantified. On cross-pollinated trees once fertilization takes place, at least one ovule per ovary becomes dominant, and transient DNA demethylation occurs coinciding with the start of the sexual embryogenic programme. Unfertilized ovules from the same cluster, which maintain their prior size, increase their methylation level and undergo degeneration. These results were validated using non-cross-pollinated trees and the asynchrony of flower receptivity. When testing in vitro somatic embryogenesis response of isolated dominant ovules and axes from zygotic embryos under cross-pollinated conditions, the highest competence was found for reaching seed maturity. Thus, a “developmental window” of somatic embryogenesis in chestnut has been characterized. It includes from fertilization to embryo maturity, and a transient decrease in methylation is necessary after fertilization for the development of the somatic embryogenesis response.  相似文献   

11.
The jasmonates as well as abscisic acid were found to be inhibitors of callus growth and somatic embryogenesis in Medicago sativa L. tissue cultures. An exposure to these inhibitors during the induction as well as the differentiation stage reduced the number of somatic embryos obtained. The jasmonates showed to be less active in the inhibition of callus growth and somatic embryo production than abscisic acid.  相似文献   

12.
13.
Seventy-six cultivars of alfalfa (Medicago sativa L., M. falcata L. and M. varia Martyn) were tested in vitro for their capacity to produce callus and somatic embryos. A three-step media protocol was used to survey the response of the cotyledons and hypocotyl of each genotype while the epicotyl region was conserved in order to recover highly responding genotypes. The best regeneration response was observed in creepingrooted cultivars which contained a strong genetic contribution of two landrace germplasm sources, defined as M. falcata and Ladak, in their ancestry. The callus and embryogenesis responses showed a high degree of variation both between cultivars and among the plants of many of the 76 cultivars tested. A higher number of plants produced somatic embryos in the high regenerating cultivars compared to the low regenerating cultivars regardless of the media protocol or explant.  相似文献   

14.
Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl2, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl2. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl2 reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl2 either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.  相似文献   

15.

Key message

Higher polyamine levels of fully developed embryos had positive effects on their ability to tolerate UV-B irradiation when compared with induced responses of early embryos.

Abstract

The aim of this work was to test the hypothesis that the higher levels of polyamines (PAs) might be involved in the response of Norway spruce somatic embryos to UV-B irradiation. We compare here the effects of 0.1, 0.6 and 6 W m?2 h?1 UV-B irradiation on polyamine metabolism in early and fully developed Norway spruce somatic embryos. The impact of UV-B treatment on irradiated embryogenic suspensor mass (ESM, consisting of early somatic embryos) and matured somatic embryos was assessed by measuring changes in the content of PAs and the activities of enzymes involved in their biosynthesis. Under control conditions, developmental stages of embryos are characterized not only by clear differences in their histological structure, but also by the levels of free PAs, which are several fold higher in fully developed embryos than those of early embryos. The decrease in the PA content and the decline in PA biosynthetic enzyme activities in irradiated ESMs were dependent on the doses of UV-B irradiation applied and the length of time after the exposure. The viability of ESM and its histological structure changed depending on the dose applied. The effect was much more pronounced in ESM treated with higher UV-B doses (0.6 W m?2 h?1), where the embryos were seriously damaged or killed, and irradiation with 6 W m?2 h?1 was lethal to the culture. No marked differences in PA contents were observed between control and UV-B irradiated fully developed embryos. The effect of UV-B irradiation on fully developed embryos was marginal when compared with that on proliferating tissue. The increase in malondialdehyde (MDA) levels in irradiated ESM was correlated with the decrease in their PA contents. Neither significant increases in MDA levels nor significant changes in PA content were observed in the fully developed embryos after irradiation; this may indicate that the plants’ defence mechanisms are particularly active in these tissues. The accumulation of higher levels of PAs in fully developed somatic embryos may be causally linked to their better tolerance to UV-B irradiation.
  相似文献   

16.
Plant homeobox genes play an important role in plant development, including embryogenesis. Recently, the function of a class I homeobox of knox 3 gene, HBK3, has been characterized in the conifer Picea abies (L.) Karst (Norway spruce) [8]. During somatic embryogenesis, expression of HBK3 is required for the proper differentiation of proembryogenic masses into somatic embryos. This transition, fundamental for the overall embryogenic process, is accelerated in sense lines over-expressing HBK3 (HBK3-S) but precluded in antisense lines (HBK3-AS) where the expression of this gene is experimentally reduced. Altered HBK3 expression resulted in major changes of ascorbate and glutathione metabolism. During the initial phases of embryogeny the level of reduced GSH was higher in the HBK3-S lines compared to their control counterpart. An opposite profile was observed for the HBK3-AS lines where the glutathione redox state, i.e. GSH/GSH + GSSG, switched towards its oxidized form, i.e. GSSG. Very similar metabolic fluctuations were also measured for ascorbate, especially during the transition of proembryogenic masses into somatic embryos (7 days into hormone-free medium). At this stage the level of reduced ascorbate (ASC) in the HBK3-AS lines was about 75% lower compare to the untransformed line causing a switch of the ascorbate redox state, i.e. ASC/ASC + DHA + AFR, towards its oxidized forms, i.e. DHA + AFR. Changes in activities of several ascorbate and glutathione redox enzymes, including dehydroascorbate reductase (EC 1.8.5.1), ascorbate free radical reductase (EC 1.6.5.4) and glutathione reductase (GR; EC 1.6.4.2) were responsible for these metabolic differences. Data presented here suggest that HBK3 expression might regulate somatic embryo yield through alterations in glutathione and ascorbate metabolism, which have been previously implicated in controlling embryo development and maturation both in vivo and in vitro.  相似文献   

17.
The effects of photoperiod and end-of-day phytochrome control on somatic embryogenesis and polyamine (PA) content in Araujia sericifera petals have been studied. Petals from immature flowers were cultured under 16- and 8-h photoperiods. Far red (FR), red (R) and FR followed by R light treatments were applied at the end of the photoperiods for three weeks. The number of somatic embryos, callus weight and the levels of free and bound PAs in the cultured petal explants were determined 40 days after the beginning of light treatments. Long day (LD) promoted somatic embryogenesis but did not have any significant effect on PA content. Short day (SD) reduced somatic embryogenesis and enhanced total PAs, mainly in the form of bound spermidine. End-of-day FR treatment increased PA content and inhibited somatic embryogensis under LD but had no significant effect under SD. This effect of FR on PA levels was cancelled by R and was independent of the presence of silver thiosulphate in the medium. End-of-day R treatment reduced the total PA content under SD. However, end-of-day R increased or reduced somatic embryogenesis under SD depending on the presence or absence of silver in the medium. The results suggest a photoperiodic control of somatic embryogenesis and PA content in A. sericifera. The effects of end-of-day R and FR treatments depend on the length of the photoperiod. This finding and the FR/R photoreversibility of end-of-day treatments indicate that phytochrome may be involved in both somatic embryogenesis and accumulation of PA.  相似文献   

18.
19.
To investigate the involvement of methylation of DNA in somatic embryogenesis we initiated a comparative study using Medicago truncatula lines that have different capacities to produce somatic embryos. Treatment with the demethylating drug 5-azacytidine caused a loss of regeneration capacity in the embryogenic line by arresting the production of somatic embryos. Analysis with methylation-sensitive enzymes showed disruption of somatic embryogenesis competence to be correlated with rDNA demethylation. Our data suggest production of somatic embryos depends on a certain level of DNA methylation.  相似文献   

20.
The effect of NO3 (0–20 mM for 7 days) upon NO3 and H2O2 metabolism in lucerne (medicago sativa L. ev. Aragón) nodules initiated by Rhizobium meliloti strain 102F51 has been examines. Ty;pical nitrate reductase, (NR) activities of bacteroids (EC 1.7.99.4) and cytosol (EC 1.6.6.1) of nodules not treated with NO3 were 60 and 45 nmol NO2 formed (mg protein)1h?1 respectively, Inductin of bacteroid NR took place in nodules exposed ot concentrations above 5 mM No3 whereas cytosol NR was induced at 5 mM No3 decreasint at greater NO3 concentrations. In resonse to NO3 additin, NO2 increasingly accumulated in the nodule cytosol at quantities commensurate with those needed to oxidise leghaemoglobin (Lb) in vitro. A comparison of patterns of NO2 accumulation and activities of NRs expressed on a nodule weight basis indicates that plant NR contributes decisively to NO2 production at the earlier phass of nodule senescence (5–10mM No3 while bacteroid NR becomes increasingly important in generating NO2 at nore advanced stages (10–20mM NO3). Specific superoxide dismutase (SOD; EC 1.15.1.1) and catalase (EC 1.11.1.6) activities of bacteroids remained constant during the NO3 induced senescence of nodules whereas SOD activity of cytosol increased 1.5-fold and catalase activity ws inhibited by 20% at 20 mM NO3 substantial peroxidase (EC 1.11.1.7) activity was found in the plant but none in the bacteroid fraction of nodules. Peroxidase activity increased significantly only at 20 mM NO3 concomitantly with malondialdephyde content. concentrations. Free H2O2 interferes wihjt Lb function in vivo is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号