首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jan CR  Jiann BP  Lu YC  Chang HT  Huang JK 《Life sciences》2002,71(26):3081-3090
In canine renal tubular cells, effect of olvanil, a presumed cannabinoid and vanilloid receptor modulator, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Olvanil (5-100 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. Olvanil-induced [Ca2+]i rise was prevented by 70 and 90% by removal of extracellular Ca2+ and La3+, respectively, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of olvanil on [Ca2+]i was abolished; also, pretreatment with olvanil partly reduced thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phoispholipase C, abrogated ATP-, but partly inhibited olvanil-, induced [Ca2+]i rise. Two cannabinoid receptor antagonists (AM251 and AM281; 5 microM) and a vanilloid receptor antagonist (capsazepine; 100 microM) did not alter olvanil (50 microM)-induced [Ca2+]i rise. These results suggest that olvanil rapidly increases [Ca2+]i in renal tubular cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via mechanism(s) independent of stimulation of cannabinoid and vanilloid receptors.  相似文献   

2.
3.
Abstract.   Objective : Our previous studies have demonstrated that endogenous bone marrow cells (BMCs) contribute to renal tubular regeneration after acute tubular injury. The aim of this study was to examine which fraction of BMCs, haematopoietic lineage marrow cells (HLMCs) or mesenchymal stem cells (MSCs), are effective. Materials and methods : Six-week-old female mice were lethally irradiated and were transplanted with female enhanced green fluorescent protein-positive (GFP+), plastic non-adherent marrow cells (as a source of HLMCs) plus cloned cultured male GFP MSCs. Four weeks later, they were assigned into two groups: control mice with vehicle treatment and mice treated with HgCl2. Tritiated thymidine was given 1 h before animal killing which occurred at intervals over 2 weeks. Kidney sections were stained for a tubular epithelial marker, cell origin indicated by GFP immunohistochemistry or Y chromosome in situ hybridization; periodic acid-Schiff staining was performed, and samples were subjected to autoradiography. One thousand consecutive renal tubular epithelial cells per mouse, in S phase, were scored as either female (indigenous) GFP+ (HLMC-derived) or male (MSC-derived). Results : Haematopoietic lineage marrow cells and MSCs stably engrafted into bone marrow and spleen, but only HLMC-derived cells, not MSCs, were found in the renal tubules and were able to undergo DNA synthesis after acute renal injury. A few MSCs were detected in the renal interstitium, but their importance needs to be further explored. Conclusion : Haematopoietic lineage marrow cells, but not cloned cultured MSCs, can play a role not only in normal wear-and-tear turnover of renal tubular cells, but also in repair after tubular injury.  相似文献   

4.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

5.
Mercury-induced Ca2+ increase and cytotoxicity in renal tubular cells   总被引:1,自引:0,他引:1  
Yeh JH  Chung HM  Ho CM  Jan CR 《Life sciences》2004,74(16):2075-2083
The effect of mercury (Hg2+), a known nephrotoxicant, on intracellular free Ca2+ levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was explored. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. Hg2+ increased [Ca2+]i in a concentration-dependent manner with an EC50 of 6 microM. The Ca2+ signal comprised a gradual increase. Removal of extracellular Ca2+ decreased the Hg2+ -induced [Ca2+]i increase by 27%, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and store Ca2+ release. In Ca2+ -free medium, the Hg2+ -induced [Ca2+]i increase was nearly abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with Hg2+ abolished thapsigargin-induced Ca2+ increase. Hg2+ -induced Ca2+ release was not altered by inhibition of phospholipase C but was potentiated by activation of protein kinase C. Overnight treatment with 1 microM Hg2+ did not alter cell proliferation rate and mitochondrial activity, but 10 microM Hg2+ killed all cells. Collectively, this study shows that Hg2+ induced protein kinase C-regulated [Ca2+]i increases in renal tubular cells via releasing store Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity. Hg2+ also caused cytotoxicity at higher concentrations.  相似文献   

6.
Huang JK  Jan CR 《Life sciences》2001,68(9):997-1004
Linoleamide is an endogenous lipid that has been shown to induce sleep in cats, rats and humans. However, its physiological function remains unclear. In this study the effect of linoleamide on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) tubular cells was examined, by using fura-2 as a Ca2+ probe. In a concentration-dependent manner, linoleamide induced increases in [Ca2+]i between 10-500 microM with an EC50 of 20 microM. The signal comprised a slow rise and a persistent phase, and was a result of internal Ca2+ release and external Ca2+ influx because it was partly inhibited by external Ca2+ removal. In Ca2+-free medium, depletion of the endoplasmic reticulum Ca2+ store with 1 microM thapsigargin abolished 100 microM linoleamide-induced internal Ca2+ release, and conversely, pretreatment with linoleamide prevented thapsigargin from releasing internal Ca2+. This demonstrates that the internal source of linoleamide-induced [Ca2+]i increase is located in the endoplasmic reticulum. This discharge of internal Ca2+ caused capacitative Ca2+ entry because after incubation with 100 microM linoleamide in Ca2+-free medium for 8 min readmission of 3 mM CaCl2 induced increases in [Ca2+]i. After the formation of inositol-1,4,5-trisphosphate (IP3) was blocked by the phospholipase C inhibitor U73122 (1 microM), linoleamide still induced an increase in [Ca2+]i but the shape of the increase was altered. Similar results were found for another sleep-inducing lipid 9,10-octadecenoamide. Together, the present study shows that the endogenous sleep-inducing lipid linoleamide was able to cause significant increases in [Ca2+]i in renal tubular cells, by releasing the endoplasmic reticulum Ca2+ store and triggering capacitative Ca2+ entry in a manner independent of IP3.  相似文献   

7.
8.
In Madin-Darby canine kidney (MDCK) cells, effect of NPC-15199 on intracellular Ca2+ concentration ([Ca2+]i) was investigated by using fura-2. NPC-15199 (100-1000 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50=500 microM). NPC-15199-induced [Ca2+]i rise was prevented by 70% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM), a mitochondrial uncoupler, and thapsigargin (1 microM), an inhibitor of the endoplasmic reticulum (ER) Ca2(+)-ATPase, caused a monophasic [Ca2+]i rise, respectively, after which the increasing effect of NPC-15199 (1 mM) on [Ca2+]i was substantially attenuated; also, pretreatment with NPC-15199 abolished CCCP- and thapsigargin-induced [Ca2+]i rises. U73122, an inhibitor of phospholipase C, [corrected] abolished 10 microM ATP (but not 1 mM NPC-15199)-induced [Ca2+]i rise. These results suggest that NPC-15199 rapidly increases [Ca2+]i by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via as yet unidentified mechanism(s).  相似文献   

9.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

10.
The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca(2+) ([Ca(2+)](ext))-induced [Ca(2+)](cyt) transients and stomatal closure in Arabidopsis. CAS (Ca(2+) sensing receptor) is a plant-specific putative Ca(2+)-binding protein that was originally proposed to be a plasma membrane-localized external Ca(2+) sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca(2+)-binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca(2+). In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca(2+). Furthermore, using the transgenic aequorin system, we showed that [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients and stomatal closure.  相似文献   

11.
An unusual cytoplasmic accumulation of glycogen within the distal tubular epithelium of the kidney was produced by subcutaneouse administration of a single dose of HgCl2 (4 mg/kg body weight), used to induce acute renal failure. Since the plasma immune-reactive insulin was increased while plasma and urine glucose levels remained normal, it was concluded that activation of glycogen synthase might have lead to this effect. Furthermore, the accumulated glycogen was considered to contribute to the protection of distal tubular cells against HgCl2-induced injury, since oxidative energy metabolism was severely depressed after HgCl2 administration.  相似文献   

12.
13.
《Life sciences》1994,55(18):PL365-PL370
The effects of the new 5-HT2A receptor antagonist sarpogrelate on the cellular action of serotonin were examined in cultured rat mesangial cells by measuring cytosolic free calcium concentration ([Ca2+]i). Sarpogrelate inhibited serotonin-induced increases in [Ca2+]i in a concentration-dependent manner. M1, a major metabolite of sarpogrelate, also exhibited an inhibitory effect exceeding that of sarpogrelate. The inhibitory effects of sarpogrelate and M1 were abolished by washing out these compounds. In contrast, the increase in [Ca2+]i induced by angiotensin II or arginine vasopressin was not affected by pretreatment of the cells with sarpogrelate or M1. These results suggest that sarpogrelate and its major metabolite (M1) act as reversible and specific 5-HT2A receptor antagonists against the contractile action of platelet-derived serotonin in mesangial cells.  相似文献   

14.
The in vitro effect of desipramine on renal tubular cell is unknown. In Madin-Darby canine kidney (MDCK) cells, the effect of desipramine on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Desipramine (>25 microM) caused a rapid and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50=50 microM). Desipramine-induced [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+ but was not altered by L-type Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which desipramine failed to release more Ca2+; in addition, pretreatment with desipramine partly decreased thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not change desipramine-induced [Ca2+]i rise. Incubation with 10-100 microM desipramine enhances or inhibits cell proliferation in a concentration- and time-dependent manner. The inhibitory effect of desipramine on proliferation was not extracellular Ca2+-dependent. Apoptosis appears to contribute to desipramine-induced cell death. Together, these findings suggest that desipramine increases baseline [Ca2+]i in renal tubular cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and can cause apoptosis.  相似文献   

15.
We used autoradiography to localize 45Ca accumulated in vitro by rat kidney that had been injured by HgCl2 in vivo. HgCl2, 1 mg/kg, was administered IV to male Sprague-Dawley rats and nephrectomies were performed from 15 min-30 days later. Kidney slices were incubated in KRB buffer containing 2 mM 45Ca at 25 degrees C for 180 min. The 45Ca slice-to-medium concentration ratio (S/M) increased significantly from a control mean of 0.8 +/- 0.04 SD (n = 4) to 1.6 +/- 0.3 (n = 4) after 1 day and reached 4.6 +/- 4.2 (n = 6) after 3 days. The serum creatinine increased more rapidly, from a control mean of 0.4 +/- 0.1 mg/dl to 0.7 +/- 0.1, 3.3 +/- 0.2, 7.2 +/- 1.6 after 4 hr, 1 day, and 3 days, respectively. Autoradiographic localization of 45Ca was first evident in necrotic proximal tubule (PT) straight segments after 1 day and was maximal at 3 days. 45Ca uptake was increased by slice incubation with N2 instead of O2, but anoxia did not alter the intrarenal distribution pattern. Necrotic PTs showing 45Ca by autoradiography were also positive by the von Kossa stain. Autoradiographs prepared from paraffin or Epon sections showed the same intrarenal distribution of 45Ca as section freeze-dry autoradiographs. Increased tissue 45Ca was due primarily to uptake by nephrocalcinotic PT segments; 40Ca accumulated in vivo exchanged for 45Ca during in vitro incubation. The exchangeable intrarenal calcium observed in this autoradiographic study was due to HgCl2-induced nephrocalcinosis.  相似文献   

16.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

17.
Hong SJ 《Cellular signalling》2002,14(10):811-817
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.  相似文献   

18.
Calpain treatment of rabbit skinned muscle fibers resulted in proteolysis of junctional foot protein or Ca2+ release channel of the sarcoplasmic reticulum. Electrophoretic and immunoblot analyses indicate that calpain cleaves off approximately 130 kDa peptide from the N-terminus. After such treatment, Ca2+ capacity of the sarcoplasmic reticulum remained normal and both Ca2+ and adenine nucleotide dependence of Ca2+-induced Ca2+ release mechanism were retained. However, the Ca2+-activated Ca2+ release rate was increased by two fold after the proteolysis. The results suggest the presence of functional domains in the junctional foot protein, and the N-terminus domain controls the activity of the Ca2+ channel without changing Ca2+ and nucleotide sensitivities.  相似文献   

19.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

20.
Terfenadine, an antihistamine used for the treatment of allergic conditions, affected Ca2+-related physiological responses in various models. However, the effect of terfenadine on cytosolic free Ca2+ levels ([Ca2+]i) and its related physiology in renal tubular cells is unknown. This study examined whether terfenadine altered Ca2+ signaling and caused cytotoxicity in Madin–Darby canine kidney (MDCK) renal tubular cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Cell viability was measured by the fluorescent reagent 4-[3-[4-lodophenyl]-2-4(4-nitrophenyl)-2H-5-tetrazolio-1,3-benzene disulfonate] water soluble tetrazolium-1 (WST-1) assay. Terfenadine at concentrations of 100–1000?μM induced [Ca2+]i rises concentration dependently. The response was reduced by approximately 35% by removing extracellular Ca2+. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone (BHQ) partly inhibited terfenadine-evoked [Ca2+]i rises. Conversely, treatment with terfenadine abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited 95% of terfenadine-induced Ca2+ release. Terfenadine-induced Ca2+ entry was supported by Mn2+-caused quenching of fura-2 fluorescence. Terfenadine-induced Ca2+ entry was partly inhibited by an activator of protein kinase C (PKC), phorbol 12-myristate 13 acetate (PMA) and by three modulators of store-operated Ca2+ channels (nifedipine, econazole, and SKF96365). Terfenadine at 200–300?μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Together, in MDCK cells, terfenadine induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Furthermore, terfenadine caused cell death that was not triggered by preceding [Ca2+]i rises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号