共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant improvement in the production of l-ribulose from inexpensive and commercially available starting materials, l-arabinose and sodium aluminate, is demonstrated. This has facilitated expeditious access to gram-scale quantities of l-ribulofuranoside derivatives. 相似文献
2.
Rhodopseudomonas acidophila strain 7050 achieved balanced growth when provided with either asparagine or glutamine as nitrogen source. Under these growth conditions R. acidophila synthesized a mixed amidase which exhibited similar activity (223–422 nmol/min·mg protein) against either nitrogen source. Determination of the free intracellular amino acid pools show that deamidation of asparagine and glutamine resulted in elevated levels of both aspartate and glutamate. Cell-free extracts of R. acidophila showed significant aminotransferase activity, particulary glutamine-oxaloacetate aminotransferase (89.7–209.3 nmol/min·mg protein), glycine oxaloacetate aminotransferase (135–227 nmol/min ·mg protein), alanine glyoxylate aminotransferase (66.3–163.2 nmol/min·mg protein) and serineglyoxylate aminotransferase (57.1–68.4 nmol/min ·mg protein). Short term labelling experiments using 14C-glyoxylate show that glycine plays an important role in amino nitrogen transfer in R. acidophila and that the enzymes for the metabolism of glyoxylate via glycine, serine and hydroxypyruvate were present in cell-free extracts. These data confirm that R. acidophila can satisfy all its' nitrogen requirements by transamination.Abbreviations GDH
glutamate dehydrogenase
- GS
glutamine synthetase
- GOGAT
glutamate synthase
- MSO
methionine sulfoximine
- GOT
glutamate—oxaloacetate aminotransferase
- GPT
glutamate-pyruvate aminotransferase
- AGAT
alanineglyoxylate aminotransferase
- GOAT
glycine-oxaloacetate aminotransferase
- GOGAT
glycine-2-oxoglutarate aminotransferase
- AOAT
alanine-oxaloacetate aminotransferase
- SGAT
serineglyoxylate aminotransferase
- INH
isonicotinylhydrazide 相似文献
3.
Schröder B Schöneberger M Rodehutscord M Pfeffer E Breves G 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2003,173(6):511-518
It was the aim of this study to examine the potential regulatory effects of a long-term low dietary protein supply on the transport capacity of the jejunal brush-border membrane for amino acids. For this purpose, we used the neutral amino acids L-alanine (representative for nonessential amino acids) and L-leucine (representative for essential amino acids) as model substances. Ten sheep lambs, 8 weeks of age and 19-27 kg body weight, were allotted to two dietary regimes with either adequate or reduced protein supply which was achieved by 17.9% and 9.7% of crude protein in the concentrated feed, respectively. The feeding periods were 4-6 weeks in length. Similarly, eight goat kids of 5-7 weeks of age and 8-14 kg body weight were allotted to either adequate (crude protein 20.1%, feeding period 9-12 weeks) or reduced protein supply (10.1%, feeding period 17-18 weeks). Dietary protein reduction in lambs caused a significant body weight loss of 0.6 +/- 0.7 kg, whereas the body weight in control animals increased by 1.9 +/- 0.7 kg (P<0.05). Plasma urea concentrations decreased significantly by 60% (low protein 2.3 +/- 0.1 versus control 5.7 +/- 0.2 mmol l(-1), P<0.001). In kids, reduction of dietary protein intake led to significant decreases of the daily weight gain by 48% from 181 +/- 8 g to 94 +/- 3 g (P<0.001) and daily dry matter intake by 27% from 568 +/- 13 g to 417 +/- 6 g (P<0.01). Respective urea concentrations in plasma were reduced by 77% from 5.2 +/- 0.4 to 1.2 +/- 0.2 mmol l(-1) (P<0.01). Kinetic analyses of the initial rates of alanine uptake into isolated jejunal brush-border membrane vesicles from sheep and goats as affected by low dietary protein supply yielded that the apparent Km was neither significantly different between the species nor significantly affected by the feeding regime thus ranging between 0.12 and 0.16 mmol.l(-1). Reduction of dietary protein, however, resulted in significantly decreased Vmax values of the transport system by 25-30%, irrespective of the species. Kinetic analyses of the initial rates of leucine uptake into jejunal brush-border membrane vesicles from sheep and goats yielded that leucine uptake was mediated by Na+-dependent as well as Na+-independent processes. Similar to alanine, apparent Km values of leucine uptake were neither different between the species nor affected due to low dietary protein and ranged between 0.08 and 0.15 mmol l(-1). In contrast to the alanine transport mechanism, dietary protein reduction resulted in increased Vmax values of Na+-dependent leucine transport by 53% in sheep and 230% in goats. Similarly, Na+-independent leucine uptake was stimulated by 85% and 200% in sheep and in goats, respectively. This study shows adaptation of amino acid absorption at the brush-border membrane level of jejunal enterocytes of small ruminants due to dietary protein reduction. Whereas the transport capacity for the nonessential amino acid alanine was reduced due to low dietary protein, the transport capacity for the essential amino acid leucine was markedly stimulated. From this, the involvement of rather different feedback mechanisms in adaptation of intestinal amino acid transport mechanisms has to be discussed. 相似文献
4.
Geobacillus thermodenitrificans, with a double-site mutation in L: -arabinose isomerase, produced 95 g L-: ribulose l(-1 ) from 500 g L: -arabinose l(-1) under optimum conditions of pH 8, 70 degrees C, and 10 units enzyme ml(-1) with a conversion yield of 19% over 2 h. The half-lives of the mutated enzyme at 70 and 75 degrees C were 35 and 4.5 h, respectively. 相似文献
5.
Eulalia Alonso Miguel Angel García-Pérez Jorge Bueso Vicente Rubio 《Neurochemical research》1991,16(7):787-794
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía 相似文献
6.
Xiao-Na Liu Xiu-Qing Zhang Shi-Xiang Zhang Jun-She Sun 《Plant Cell, Tissue and Organ Culture》2007,91(1):1-7
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations
were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins. 相似文献
7.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V
m), intracellular K+, Cl-, and Na+ activities (a
i
k, a
Cl
i
and a
Na
i
), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m
l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V
m was -33±1 mV. l-alanine uptake first depolarized V
m by 2±0.2 mV and then hyperpolarized V
m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a
Na
i
increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a
K
i
did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V
m, but now a
K
i
decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V
m by l-alanine uptake also resulted in a 38% decrease of a
Cl
i
from 20±2 to 12±3 mm (P < 0.001). Changes in V
m and V
Cl — V
m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl– with the V
m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a
Cl
i
remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a
K
i
is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V
m due to increased K+ conductance. The hyperpolarization of V
m during l-alanine uptake provides electromotive force to decrease a
Cl
i
. The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association. 相似文献
8.
Costantino Iadecola M.D. Xiaohong Xu Fangyi Zhang Jingru Hu Esam E. El-Fakahany 《Neurochemical research》1994,19(4):501-505
We studied the dose-response characteristics and the temporal profile of inhibition of brain nitric oxide (NO) synthase (NOS) elicited by i.v. administration of the NOS inhibitor nitro-l-arginine methyl ester (L-NAME). L-NAME was administered i.v. in awake rats equipped with a venous cannula. L-NAME was injected in cumulative doses of 5, 10, 20 and 40 mg/kg and rats were sacrificed 30 min after the last dose. NOS catalytic activity was assayed in forebrain cytosol as the conversion of [3H]l-arginine into [3H]l-citrulline. L-NAME attenuated brain NOS activity in a dose-dependent manner but enzyme activity could not be inhibited by more than 50%. After a single 20 mg/kg injection of L-NAME the inhibition of brain NOS activity was time dependent and reached a stable level at 2 hrs (52% of vehicle). Inhibition after a single injection was still present at 96 hrs, albeit to a lower magnitude. We conclude that intravenous administration of L-NAME in rats at concentrations commonly used in physiological experiments leads to a dose and time-dependent but partial inhibition of brain NOS catalytic activity. The finding that the inhibition persists for several days after a single administration is consistent with the hypothesis that nitro-L-arginine, the active principle of L-NAME, binds to NOS irreversibly. 相似文献
9.
Soyoung Shin Srinidi Mohan Ho-Leung Fung 《Biochemical and biophysical research communications》2011,(4):660
We examined the relative contributory roles of extracellular vs. intracellular l-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of 15N4-ARG, ARG, or l-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, 15N4-ARG, dimethylarginines, and l-citrulline by an LC–MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by15N-nitrite or estimated 15N3-citrulline concentrations when 15N4-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced 15N4-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by 15N-nitrite, total nitrite and 15N3-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the “l-arginine paradox” should not consider intracellular ARG concentration as a reference point. 相似文献
10.
The functions and applications of l-α-dipeptides (dipeptides) have been poorly studied compared with proteins or amino acids. Only a few dipeptides, such as
aspartame (l-aspartyl-l-phenylalanine methyl ester) and l-alanyl-l-glutamine (Ala-Gln), are commercially used. This can be attributed to the lack of an efficient process for dipeptide production
though various chemical or chemoenzymatic method have been reported. Recently, however, novel methods have arisen for dipeptide
synthesis including a nonribosomal peptide-synthetase-based method and an l-amino acid α-ligase-based method, both of which enable dipeptides to be produced through fermentative processes. Since it
has been revealed that some dipeptides have unique physiological functions, the progress in production methods will undoubtedly
accelerate the applications of dipeptides in many fields. In this review, the functions and applications of dipeptides, mainly
in commercial use, and methods for dipeptide production including already proven processes as well as newly developed ones
are summarized. As aspartame and Ala-Gln are produced using different industrial processes, the manufacturing processes of
these two dipeptides are compared to clarify the characteristics of each procedure. 相似文献
11.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 10–18 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth
OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition
(ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
12.
A novel transglycosylation reaction from sucrose to l-ascorbic acid by a recombinant sucrose phosphorylase from Bifidobacterium longum was used to produce a stable l-ascorbic acid derivative. The major product was detected by HPLC, and confirmed to be 2-O-α-d-glucopyranosyl-l-ascorbic acid by LC-MS/MS analysis. 相似文献
13.
Summary The presence of an enzyme activity which hydrolyzes glycyl-d-aspartate was found in the homogenates of pig kidney cortex. The activity was inhibited by metal chelating agents and cilastatin, suggesting that the enzyme was a cilastatin-sensitive metallo-peptidase. Of the two hydrolysis products,d-aspartate was found to be less accumulated than glycine. The fate ofd-aspartate was, therefore, examined and the amino acid was found to be converted tol-aspartate,l-alanine and pyruvate, in the presence ofl-glutamate. Experiments with enzyme inhibitors suggested that the conversion involvedd-aspartate oxidase, aspartate aminotransferase and alanine aminotransferase as well as decarboxylation of oxaloacetate produced fromd-aspartate. All the results indicate that the enzymes in the pig kidney can liberate thed-aspartyl residue in the peptide and convert it to the compounds readily utilizable. The finding suggests a probable metabolic pathway of thed-aspartate-containing peptide. 相似文献
14.
Francisco Javier Caballero Isabel Igeño Jacobo Cárdenas Francisco Castillo 《Archives of microbiology》1989,152(5):508-511
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH
l-alanine dehydrogenase
- AOAT
l-alanine:2-oxoglutarate aminotransferase
- Asnase
l-asparaginase
- GOAT
Glycine: oxaloacetate aminotransferase
- GOGAT
Glutamate synthase
- GOT
l-aspartate: 2-oxoglutarate aminotransferase
- GS
Glutamine synthetase
- HPLC
High-Pressure Liquid Chromatography
- MOPS
2-(N-morpholino)propanesulfonic acid
- MSX
l-methionine-d,l-sulfoximine 相似文献
15.
Two systems for l-glutamate transport were found in Salmonella typhimurium LT-2 GltU+ (glutamate utilization) mutants. The first one is similar to the glt system previously described in Escherichia coli; by transductional analysis the structural gene, gltS, coding for the transport protein was located at minute 80 of the chromosome as part of the operon gltC-gltS, and its regulator, the gltR gene, near minute 90; the gltS gene product transports both l-glutamate and l-aspartate, is sodium independent, and is -hydroxyaspartate sensitive. The second transport system, whose structural gene was called gltF and is located at minute 0, was l-glutamate specific, sodium independent, and -methylglutamate sensitive. Two aspartase activities occurred in S. typhimurium LT-2: the first one was present only in the GltU+ mutants, had a pH 6.4 optimum, was essential for both l-glutamate and l-aspartate metabolism, and mapped at minute 94, close to the ampC gene. The second one had a pH 7.2 optimum, could be induced by several amino acids, and thus may have a general role in nitrogen metabolism. 相似文献
16.
Molecular access to amino acid excretion by Corynebacterium glutamicum and Escherichia coli led to the identification of structurally novel carriers and novel carrier functions. The exporters LysE, RhtB, ThrE and BrnFE each represent the protoype of new transporter families, which are in part distributed throughout all of the kingdoms of life. LysE of C. glutamicum catalytes the export of basic amino acids. The expression of the carrier gene is regulated by the cell-internal concentration of basic amino acids. This serves, for example, to maintain homoeostasis if an excess of l-lysine or l-arginine inside the cell should arise during growth on complex media. RhtB is one of five paralogous systems in E. coli, of which at least two are relevant for l-threonine production. A third system is relevant for l-cysteine production. It is speculated that the physiological function of these paralogues is related to quorum sensing. ThrE of C. glutamicum exports l-threonine and l-serine. However, a ThrE domain with a putative hydrolytic function points to an as yet unknown role of this exporter. BrnFE in C. glutamicum is a two-component permease exporting branched-chained amino acids from the cell, and an orthologue in B. subtilis exports 4-azaleucine. 相似文献
17.
Yuta Mutaguchi Taketo Ohmori Haruhiko Sakuraba Kazunari Yoneda Katsumi Doi Toshihisa Ohshima 《Analytical biochemistry》2011,(1):1
Methods with which to simply and rapidly assay l-aspartate (l-Asp) and d-aspartate (d-Asp) would be highly useful for physiological research and for nutritional and clinical analyses. Levels of l- and d-Asp in food and cell extracts are currently determined using high-performance liquid chromatography. However, this method is time-consuming and expensive. Here we describe a simple and specific method for using an l-aspartate dehydrogenase (l-AspDH) system to colorimetrically assay l-Asp and a system of three hyperthermophilic enzymes—aspartate racemase (AspR), l-AspDH, and l-aspartate oxidase (l-AO)—to assay d-Asp. In the former, the reaction rate of nicotinamide adenine dinucleotide (NAD+)-dependent l-AspDH was measured based on increases in the absorbance at 438 nm, reflecting formation of formazan from water-soluble tetrazolium-1 (WST-1), using 1-methoxy-5-methylphenazinum methyl sulfate (mPMS) as a redox mediator. In the latter, d-Asp was measured after first removing l-Asp in the sample solution with l-AO. The remaining d-Asp was then changed to l-Asp using racemase, and the newly formed l-Asp was assayed calorimetrically using NAD+-dependent aspartate dehydrogenase as described above. This method enables simple and rapid spectrophotometric determination of 1 to 100 μM l- and d-Asp in the assay systems. In addition, methods were applicable to the l- and d-Asp determinations in some living cells and foods. 相似文献
18.
Summary
l-Galactose,d-arabinose, andl-fucose form six-membered rings with identical stereoconfigurations. However, onlyl-fucose can serve as the sole carbon and energy source of wild-typeEscherichia coli K-12. A mutant that can grow onl-galactose andd-arabinose was isolated by alternate selection on the two sugars. Thel-fucose pathway became inducible by all three sugars. Transduction into the mutant of the wild-type fuc+ region containing both the regulatory and structural genes abolished the novel growth abilities onl-galactose andd-arabinose, whereas transduction into the mutant of a fuc deletion abolished the growth abilities on all three sugars. Introduction of the wild-type fucR+ (which encodes the activator protein for the fuc regulon) on a multicopy plasmid depressed the growth abilities of the mutant onl-galactose andd-arabinose, but not onl-fucose. The results suggest that the effector specificity of the activator protein in the mutant was broadened. It is proposed that an adaptive response of an activator-controlled system is more likely than that of a repressor-controlled system to achieve fixation in a population, because the first variant to emerge in response to a novel metabolic demand has a good chance of having an altered specificity of regulation. Such a change entails little or no metabolic liability during the absence of the novel substrate. In contrast, the first variant of a negatively controlled system to emerge has an overwhelming chance of being the result of a random mutation that destroys repressor function. Although negatively controlled systems can be more opportunistic in exploiting new conditions than positively controlled systems, an adaptive change is less likely to become fixed because of the cost associated with gratuitous constitutive gene expression in the absence of the substrate. 相似文献
19.
Fekete E Karaffa L Sándor E Bányai I Seiboth B Gyémánt G Sepsi A Szentirmai A Kubicek CP 《Archives of microbiology》2004,181(1):35-44
The catabolism of d-galactose in yeast depends on the enzymes of the Leloir pathway. In contrast, Aspergillus nidulans mutants in galactokinase (galE) can still grow on d-galactose in the presence of ammonium—but not nitrate—ions as nitrogen source. A. nidulans galE mutants transiently accumulate high (400 mM) intracellular concentrations of galactitol, indicating that the alternative d-galactose degrading pathway may proceed via this intermediate. The enzyme degrading galactitol was identified as l-arabitol dehydrogenase, because an A. nidulans loss-of-function mutant in this enzyme (araA1) did not show NAD+-dependent galactitol dehydrogenase activity, still accumulated galactitol but was unable to catabolize it thereafter, and a double galE/araA1 mutant was unable to grow on d-galactose or galactitol. The product of galactitol oxidation was identified as l-sorbose, which is a substrate for hexokinase, as evidenced by a loss of l-sorbose phosphorylating activity in an A. nidulans hexokinase (frA1) mutant. l-Sorbose catabolism involves a hexokinase step, indicated by the inability of the frA1 mutant to grow on galactitol or l-sorbose, and by the fact that a galE/frA1 double mutant of A. nidulans was unable to grow on d-galactose. The results therefore provide evidence for an alternative pathway of d-galactose catabolism in A. nidulans that involves reduction of the d-galactose to galactitol and NAD+-dependent oxidation of galactitol by l-arabitol dehydrogenase to l-sorbose. 相似文献
20.
Increased Lipid Peroxidation and Ascorbic Acid Utilization in Testis and Epididymis of Rats Chronically Exposed to Lead 总被引:4,自引:0,他引:4
Mariola Marchlewicz Barbara Wiszniewska Bolesław Gonet Irena Baranowska-Bosiacka Krzysztof Safranow Agnieszka Kolasa Wojciech Głąbowski Rafał Kurzawa Katarzyna Jakubowska Monika E. Rać 《Biometals》2007,20(1):13-19
The hypothesis has been recently presented that lead may exert its negative effect at least partially through the increase
of reactive oxygen species (ROS) level in tissues. However, little is known about the influence of lead intoxication on equilibrium
between generation and elimination of ROS in the male reproductive system. Sexually mature male Wistar rats were given ad libitum 1% of aqueous solution of lead acetate (PbAc) for 9 months. Significantly higher lead concentrations were found in blood
[median 7.03 (Q25–Q75: 2.99–7.65) versus 0.18 (0.12–0.99) μg dl−1, P < 0.01], caput epididymis [median 5.51 (Q25–Q75: 4.31–7.83) versus 0.51 (0.11–0.80) μg g−1 d.m., P < 0.001], cauda epididymis [median 5.88 (Q25–Q75: 4.06–8.37) versus 0.61 (0.2 – 1.08) μg g−1 d.m., P < 0.001] and testis [median 1.81 (Q25–Q75: 0.94–2.31) versus 0.17 (0.03–0.3) μg g−1 d.m., P < 0.01] of lead-intoxicated rats when compared to the control. The concentration of ascorbyl radical, generated in vitro from l-ascorbic acid (present in tissues in vivo) was measured by means of Electron Paramagnetic Resonance (EPR) spectroscopy. The EPR signal of ascorbyl radical in caput
epididymis, cauda epididymis, testis and liver of lead acetate-treated animals revealed a significant decrease by 53%, 45%,
40% and 69% versus control tissues, respectively. Plasma l-ascorbic acid content measured by high performance liquid chromatography (HPLC) method and total antioxidant status (TAS)
measured by means of spectrophotometry were also significantly lower in the intoxicated versus control animals (28% and 21%, respectively). In the group exposed to lead the concentration of lipid peroxide in homogenates
of the reproductive system organs was significantly elevated versus control group. It can be assumed that the lower EPR signal was caused by decreased tissue concentrations of l-ascorbic acid. The latter may have resulted from consumption of ascorbic acid for scavenging of ROS excess in tissues of
animals chronically exposed to lead. 相似文献