首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of new donors and acceptors of nitrogen oxide is described. New lipophilic nitronylnitroxyl radicals (NNR) that act as paramagnetic scavengers of nitrogen oxide are synthesized and characterized. The purity of the preparations is determined, and their structures are confirmed. The lipophilicity of the radicals is tested by ESR spectroscopy. The incorporation into lipid multilayers is shown to protect NNR from reduction in biological samples, while their ability to scavenge nitrogen oxide and form iminonitroxyl radicals is retained. A decreased rate of NNR reduction under these conditions substantially enhances their effectiveness as paramagnetic acceptors of nitrogen oxide in biological systems. The synthesis of a new hydrophilic NO donor, 3-bromo-3,4-dihydro-4,4-dimethyl-3-(2-pyridyl)-diazet-1,2-dioxide (DDpyr), is described. The constants of DDpyr decomposition in tris-HCl buffer (pH 7.5) and in DMSO are determined (4.5 × 10–6 and 0.5 × 10–6 s–1, respectively). A substantially higher rate of DDpyr decomposition in buffer, compared with the decomposition rates determined previously for some diazetines, makes DDpyr a prospective candidate for the use in aqueous media. It is found in experiments on perfused rat caudal artery that DDpyr is an effective vasodilator. Intraperitoneal injection of DDpyr to hereditarily hypertensive rats (ISIAH line) at doses of 100–200 g/kg body mass considerably diminishes their systolic arterial pressure.  相似文献   

2.
A possible route to S-nitrosothiols in biology is the reaction between thiyl radicals and nitric oxide. D. Hofstetter et al. (Biochem. Biophys. Res. Commun.360:146-148; 2007) claimed an upper limit of (2.8+/-0.6)x10(7) M(-1)s(-1) for the rate constant between thiyl radicals derived from glutathione and nitric oxide, and it was suggested that under physiological conditions S-nitrosation via this route is negligible. In the present study, thiyl radicals were generated by pulse radiolysis, and the rate constants of their reactions with nitric oxide were determined by kinetic competition with the oxidizable dyes 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) and a phenothiazine. The rate constants for the reaction of nitric oxide with thiyl radicals derived from glutathione, cysteine, and penicillamine were all in the range (2-3) x10(9) M(-1)s(-1), two orders of magnitude higher than the previously reported estimate in the case of glutathione. Absorbance changes on reaction of thiyl radicals with nitric oxide were consistent with such high reactivity and showed the formation of S-nitrosothiols, which was also confirmed in the case of glutathione by HPLC/MS. These rate constants imply that formation of S-nitrosothiols in biological systems from the combination of thiyl radicals with nitric oxide is much more likely than claimed by Hofstetter et al.  相似文献   

3.
The molar growth yields of Pseudomonas denitrificans, for nitrate, nitrite and nitrous oxide, were determined in chemostat culture under electron acceptor-limited conditions. Glutamate was used as the source of energy, carbon and nitrogen. The catabolic pattern was identical, irrespective of the terminal electron acceptors. The molar growth yields, corrected for maintenance energy, were 28-6 g/mol nitrate, 16-9 g/mol nitrite and 8-8 g/mol nitrous oxide. The energy yield, expressed on an electron basis, was proportional to the oxidation number of the nitrogen: nitrate (plus 5), nitrite (plus 3) and nitrous oxide (plus 1). It was concluded that oxidative phosphorylation occurs to a similar extent in each of the electron transport chains associated with the reduction of nitrate to nitrite, nitrite to nitrous oxide and nitrous oxide to nitrogen.  相似文献   

4.
Tetrathiatriarylmethyl radicals are ideal spin probes for biological electron paramagnetic resonance (EPR) spectroscopy and imaging. The wide application of trityl radicals as biosensors of oxygen or other biological radicals was hampered by the lack of affordable large-scale syntheses. We report the large-scale synthesis of the Finland trityl radical using an improved addition protocol of the aryl lithium monomer to methylchloroformate. A new reaction for the formal one-electron reduction of trityl alcohols to trityl radicals using neat trifluoroacetic acid is reported as well. Initial applications show that the compound is very sensitive to molecular oxygen. It has already provided high-resolution EPR images on large aqueous samples and should be suitable for a broad range of in vivo applications.  相似文献   

5.
Zeolite-Y powder has been functionalized with ferric iron-diethyldithiocarbamate complexes and applied to trap nitric oxide radicals in liquids and biological systems. The complexes have been assembled in situ in the pores of zeolite-Y and act as traps for nitric oxide radicals. The resulting mononitrosyl-iron complexes form a mixture of diamagnetic ferric and paramagnetic ferrous complexes. The yield of trapped NO may be determined ex situ using electron paramagnetic resonance. The material may be anchored on solid surfaces, mixed into a composite or compressed into small pellets. The material was used to detect endogenous NO in endothelial cell cultures and spinach leaves. The sensitivity of the functionalized zeolite is significantly better than that achieved in conventional trapping of NO with iron-diethyldithiocarbamate complexes.  相似文献   

6.
The formation of free radicals during the reaction of anthralin analogues with peroxidizing polyunsaturated lipids was monitored by ESR spectroscopy. The biological effect of the different compounds was assessed by their ability to inhibit respiration of cultured human keratinocytes. C(10)-monosubstituted analogues of anthralin exhibited a strong antirespiratory effect and produced a cascade of radicals. Abstraction of the hydrogen atom at C(10) led to the generation of primary radicals which further decomposed into secondary radicals similar to those observed with anthralin itself. 10, 10'-disubstituted analogues of anthralin did not form any paramagnetic species during reaction with peroxidizing lipids while decomposition of a 2,7-disubstituted anthralin derivative under the same conditions resulted in primary, but not secondary radical species. Since both types of disubstituted analogues are devoid of antirespiratory activity we postulate that the antimitochondrial and thus antiproliferative activity of anthralin and its analogues is associated with their capacity to form secondary radicals during their decomposition.  相似文献   

7.
Nitric oxide (*NO) has been proposed to play a relevant role in modulating oxidative reactions in lipophilic media like biomembranes and lipoproteins. Two factors that will regulate *NO reactivity in the lipid milieu are its diffusion and solubility, but there is no data concerning the actual diffusion (D) and partition coefficients (KP) of *NO in biologically relevant hydrophobic phases. Herein, a "equilibrium-shift" method was designed to directly determine the *NO and O2 partition coefficients in liposomes and low density lipoprotein (LDL) relative to water. It was found that *NO partitions 4.4- and 3.4-fold in liposomes and LDL, respectively, whereas O2 behaves similarly with values of 3.9 and 2.9, respectively. In addition, actual diffusion coefficients in these hydrophobic phases were determined using fluorescence quenching and found that *NO diffuses approximately 2 times slower than O2 in the core of LDL and 12 times slower than in buffer (DNOLDL=3.9 x 10(-6) cm2 s(-1),DO2LDL=7.0 x 10(-6) cm2 s(-1),DNObuffer=DO2buffer=4.5 x 10(-5) cm2 s(-1)). The influence of *NO and O2 partitioning and diffusion in membranes and lipoproteins on *NO reaction with lipid radicals and auto-oxidation is discussed. Particularly, the 3-4-fold increase in O2 and *NO concentration within biological hydrophobic phases provides quantitative support for the idea of an accelerated auto-oxidation of *NO in lipid-containing structures, turning them into sites of enhanced local production of oxidant and nitrosating species.  相似文献   

8.
Free-radical interactions between hydroquinones (QH2) and ascorbate (AscH-) have a profound impact in many biological situations. Despite the obvious biological significance, not much is known about the kinetics of reactions of QH2 and AscH- with their corresponding free radicals, i.e., semiquinones, Q1.-, and the ascorbate radical, Asc.-. Furthermore, a general approach to reliably measure rate constants for the above reactions is fraught with complications. In this work, the kinetic behavior of Q.- and Asc.-, after pulse radiolytic oxidation of mixtures of a series of alkyl- and methoxysubstituted hydroquinones and ascorbate by azide radicals in aqueous buffer, pH 7.40, was monitored in submillisecond range by time-resolved UV spectroscopy. Rate constants for reactions of Q.- with AscH-(reaction [1]) and Asc.- (reaction [2]) were directly determined by using new kinetic procedures which distinguished between reactions [1] and [2]. The results show that the rate constants for reaction [2] vary only within a narrow range from 1.2 x 10(8) to 2.5 x 10(8) M(-1) s(-1) and do not display any pronounced correlation with Q.- structures. In contrast, the value of k1 for nonsubstituted Q.- was found to be (1.8 +/- 0.2) x 10(5) M(-1) s(-1) and decreases with the number of alkyl and methoxy substituents as well as with the decrease of the one-electron reduction potential E(Q.-/QH2).  相似文献   

9.
The technique of in vivo EPR spectroscopy can provide useful and even unique information pertinent to the study of oxygen/ nitrogen radicals and related processes. The parameters that can be measured include: (a) Oxygen centered radicals (by spin trapping); (b) carbon centered radicals (by spin trapping and sometimes by direct observation); (c) sulfur centered radicals (by spin trapping and sometimes by direct observation); (d) nitric oxide (by spin trapping); (e) oxygen (using oxygen sensitive paramagnetic materials); (f) redox state (using metabolism of nitroxides); (g) thiol groups (using special nitroxides); (h) pH (using special nitroxides); (h) perfusion (using washout of paramagnetic tracers); (i) some redox active metal ions (chromium, manganese). The current state of the art for these and other measurements is discussed, especially in relationship to experiments that are likely to be useful for studies of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS).  相似文献   

10.
The protective effects of (-)-epigallocatechin-3-gallate (EGCg) or the C-2 epimer, (-)-gallocatechin-3-gallate (GCg), afforded by their antioxidative activity among green tea catechins were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. The recovery (%) of the left ventricular developed pressure from ischemia by reperfusion was 34.4% in the control, while in the presence of EGCg (3x10(-5) M) or GCg (3x10(-6) M, a more diluted concentration than that of EGCg), it led to a maximal increase of 78.4% or 76.2%, consistent with a significant preservative effect on the tissue level of ATP at the end of ischemia or reperfusion. In the perfused preparation of mitochondria, EGCg (10(-5) M) inhibited mitochondrial Ca(2+) elevation by changes in the Ca(2+) content or the acidification of perfusate, similarly to findings with cyclosporin A, a well known inhibitor of the mitochondrial permeability transition pore. By in vitro electron paramagnetic resonance (EPR), EGCg or GCg was found to directly quench the activity of active oxygen radicals, with the strongest activity in tea catechins. EGCg or GCg decreased the caspase-3 activity induced apoptosis. Therefore, it is concluded that the beneficial effects of EGCg or GCg play an important role in ischemia-reperfusion hearts in close relation with nitric oxide (NO), active oxygen radicals and biological redox systems in mitochondria.  相似文献   

11.
The technique of in vivo EPR spectroscopy can provide useful and even unique information pertinent to the study of oxygen/nitrogen radicals and related processes. The parameters that can be measured include: (a) Oxygen centered radicals (by spin trapping); (b) carbon centered radicals (by spin trapping and sometimes by direct observation); (c) sulfur centered radicals (by spin trapping and sometimes by direct observation); (d) nitric oxide (by spin trapping); (e) oxygen (using oxygen sensitive paramagnetic materials); (f) redox state (using metabolism of nitroxides); (g) thiol groups (using special nitroxides); (h) pH (using special nitroxides); (h) perfusion (using washout of paramagnetic tracers); (i) some redox active metal ions (chromium, manganese). The current state of the art for these and other measurements is discussed, especially in relationship to experiments that are likely to be useful for studies of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS).  相似文献   

12.
Main principles of the way to decompose an EPR spectrum of a multicomponent system, irradiated at 77 K, into separate radiation-induced paramagnetic centre signals are given. The decomposition is possible due to the computer assistant spectra processing, and is based on different properties of different paramagnetic centres, namely, on different thermostability of the centres, on different rate of relaxation, and on different photosensitivity. Concrete examples of the EPR spectrum decomposition into different free radical signals are given for cases of murine liver and spleen irradiated at 77 K. Radiochemical yields of different free radicals, induced by gamma radiation at 77 K in whole biological tissues, were defined. The data on nature and properties of the paramagnetic centres induced by radiation in biological tissues are shortly reviewed.  相似文献   

13.
Denitrification, the reduction of nitrate to nitrous oxide or dinitrogen, is the major biological mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Microorganisms capable of denitrification are widely distributed in the environment but little is known about their abundance since quantification is performed using fastidious and time-consuming MPN-based approaches. We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirK), a key enzyme of the denitrifying pathway catalyzing the reduction of soluble nitrogen oxide to gaseous form. The real-time PCR assay was linear over 7 orders of magnitude and sensitive down to 10(2) copies by assay. Real-time PCR analysis of different soil samples showed nirK densities of 9.7x10(4) to 3.9x10(6) copies per gram of soil. Soil real-time PCR products were cloned and sequenced. Analysis of 56 clone sequences revealed that all cloned real-time PCR products exhibited high similarities to previously described nirK. However, phylogenetic analysis showed that most of environmental sequences are not related to nirK from cultivated denitrifiers.  相似文献   

14.
Evidence for the production of singlet molecular oxygen (1O2) during the chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide has been obtained through the use of optical spectroscopy, oxygen electrode experiments, and electron spin resonance (ESR). ESR spin-trapping experiments with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrate the production of the ethyl peroxyl free radical during the chloroperoxidase/ethyl hydroperoxide reaction. Oxygen and acetaldehyde concentrations suggest that the production of ethyl peroxyl radicals constitutes less than 2% of the decomposition of ethyl hydroperoxide at the concentrations of reactants used. The phosphorescence of 1O2 at 1268 nm was observed during the chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide in deuterium oxide buffer. Chloroperoxidase also catalyzes the decomposition of tert-butyl hydroperoxide to its corresponding peroxyl radical. Alkoxyl and alkyl-DMPO spin adducts were also detected. A much lower yield of 1O2 phosphorescence was observed during the chloroperoxidase-catalyzed decomposition of tert-butyl hydroperoxide. This phosphorescence probably arises through secondary production of alkyl peroxyl radicals. These results suggest that the initial enzyme-dependent production of ethyl peroxyl radicals is followed by enzyme-independent reaction of two peroxyl radicals through the tetroxide intermediate, as originally proposed by Russell (Russell, G. A. (1957) J. Am. Chem. Soc. 79, 3871-3877), to form acetaldehyde, ethyl alcohol, and molecular oxygen.  相似文献   

15.
The in vivo conditions needed for the induction of nitrogen oxide synthesis by hepatocytes were determined. Hepatocytes obtained from rats injected with killed Corynebacterium parvum spontaneously produced NO2(-)+NO3- in culture and were found to contain cytosolic enzyme activity for nitrogen oxide synthesis. The enzyme activity required both L-arginine and NADPH, and was not found in hepatocytes obtained from normal rats or rats injected with lipopolysaccharide (LPS) alone. In contrast, nonparenchymal cells were stimulated to synthesize NO2(-)+NO3- by LPS. These results show the presence of inducible cytosolic enzyme activity for nitrogen oxide synthesis in hepatocytes, which is distinct from nonparenchymal cell NO. synthesis.  相似文献   

16.
Peroxynitrite is a known cytotoxic agent that plays a role in many pathological conditions. Various peroxynitrite decomposition catalysts and pathways are being explored to develop efficient therapeutic agents that can safely remove peroxynitrite from cells and tissues. Water-soluble porphyrins, such as iron(III) meso-tetra(2,4,6-trimethyl-3,5-disulfonato)porphine chloride (FeTMPS) and iron(III) meso-tetra(N-methyl4-pyridyl)porphine chloride (FeTMPyP), have been shown to react catalytically with peroxynitrite (ONOO-). However, their mechanisms are yet to be fully understood. In this study, we have explored the reactivity of FeTMPS in the catalytic decomposition of peroxynitrite. The mechanism of this complex process has been determined. According to this mechanism, Fe(III)TMPS is oxidized by peroxynitrite to produce oxoFe(lV)TMPS and NO2 (k1 = 1.3 x 10(5) M(-1)(s(-1). The porphyrin is then reduced back to Fe(III)TMPS by nitrite, but this rate (k2 = 1.4 x 10(4) M(-1)s(-1)) is not sufficient to maintain the catalytic process at the observed rate. The overall rate of peroxynitrite decomposition catalysis, kcat, was determined to be 6 x 10(4) M(-1)s(-1), under typical conditions. We have postulated that an additional reduction pathway must exist. Kinetic simulations showed that a reaction of oxoFe(IV)TMPS with NO2 (k3 = 1.7 x 10(7) M((-1)s(-1)) could explain the behavior of this system and account for the fast reduction of oxoFe(IV)TMPS to Fe(III). Using the kinetic simulation analysis, we have also shown that two other rearrangement reactions, involving FeTMPS and peroxynitrite, are plausible pathways for peroxynitrite decay. A "cage-return" reaction between the generated oxoFe(IV)TMPS and NO2 (k8 = 5.4 x 10(4) M(-1)s(-1)), affording Fe(III)TMPS and nitrate, and a reaction between oxoFe(IV)TMPS and peroxynitrite (k7 = 2.4 x 10(4) M(-1)s(-1)) that affords oxoFe(IV)TMPS and nitrate are presented. The mechanism of FeTMPS-catalyzed peroxynitrite decay differs markedly from that of FeTMPyP, providing some insight into the reactivity of metal centers with peroxynitrite and biologically important radicals such as NO2.  相似文献   

17.
Electron paramagnetic resonance (EPR) spin trapping studies demonstrated aqueous tar particulate matter (TPM) and gas phase cigarette smoke (GPCS) to behave as different sources of free radicals in cigarette smoke (CS) but their cytotoxic implications have been only assessed in CS due to its relevance to the natural smoking process. Using a sensitive spin trapping detection with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO), this study compared the respective roles of CS- and GPCS-derived free radicals on smoke-induced cytotoxicity and lipid peroxidation of filtered and unfiltered, machine-smoked experimental and reference cigarettes yielding a wide range of TPM yields. In buffer bubbled with CS the DEPMPO/superoxide spin adduct was the major detected nitroxide. Use of appropriate control experiments with nitric oxide radical (NO*) or carbonyl sulfide, and a computer analysis of spin adduct diastereoisomery showed that the hydroxyl radical (HO*) adduct of DEPMPO seen in GPCS-bubbled was rather related to metal-catalyzed nucleophilic synthesis than to direct HO* trapping. Unexpectedly a protective effect of TPM on murine 3T3 fibroblasts was observed in early (<3h) free radical-, GPCS-induced cell death, and carbon filtering decreased free radical formation, toxicity and lipid peroxidation in three cell lines (including human epithelial lung cells) challenged with GPCS. These results highlight an acute, free radical-dependent, harmful mechanism specific to the GPCS phase, possibly involving NO* chemistry, whose physical or chemical control may be of great interest with the aim of reducing the toxicity of smoke.  相似文献   

18.
Kissner R  Nauser T  Kurz C  Koppenol WH 《IUBMB life》2003,55(10-11):567-572
Peroxynitrite is an inorganic toxin of physiological interest, formed from the diffusion-controlled reaction of superoxide and nitrogen monoxide with a rate constant of (1.6 +/- 0.3) x 10(10) M(-1) s(-1). On the basis of three experiments we conclude that homolysis of the O-O bond in peroxynitrous acid is unlikely: (1) the yield of nitrite from the decomposition of peroxynitrite shows a dependence on the peroxynitrite concentration and is lower than expected for homolysis; (2) the yield of [15N]nitrate from the reaction of [15N]nitrite with peroxynitrous acid predicted by homolysis does not correspond to that found experimentally, and (3) the reaction of peroxynitrous acid with monohydroascorbate does not yield ascorbyl radicals. Activation volumes determined from high-pressure kinetic studies are inconclusive.  相似文献   

19.
Hydrogen peroxide or superoxide anion radicals form a paramagnetic complex in the reaction with chromium(VI) oxide in an alkaline water solution at room temperature. The complex [Cr(OH)5O2]5- with the g-value equal to 1.9734 is believed to contain hydroxyl groups derived from the alkaline solution and dioxygen derived from hydrogen peroxide or superoxide anion radicals.  相似文献   

20.
Azotobacter vinelandii OP was synchronized by the continuous phased culture technique. The nitrogenase (nitrogen:(acceptor)oxidoreductase)(EC 1.7.99.2) activity of the culture was determined continuously within the fermentor by acetylene reduction. Addition of NH4+ in excess of 5 x 10(-3)M to the culture lowered nitrogenase activity immediately. Other sources of fixed nitrogen had no immediate effect on nitrogenase activity, but nitrogenase synthesis decreased in the cell cycle following the one in which the fixed nitrogen was added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号