首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.  相似文献   

2.
Brain astrocytes provide structural and metabolic support to surrounding cells during ischemia. Glucose and oxygen are critical to brain function, and glucose uptake and metabolism by astrocytes are essential to their metabolic coupling to neurons. To examine astrocyte metabolic response to hypoxia, cell survival and metabolic parameters were assessed in rat primary cortical astrocytes cultured for 3 weeks in either normoxia or in either 1 day or 3 weeks sustained hypoxia (5% O2). Although cell survival and proliferation were not affected by the mildly hypoxic environment, substantial differences in glucose consumption and lactate release after either acute or prolonged hypoxia suggest that astrocyte metabolism may contribute to their adaptation. Hypoxia over a period of 1 day increased glucose uptake, lactate release, and glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) expression, whereas hypoxia over a period of 3 weeks resulted in a decrease of all parameters. Furthermore, increased glucose uptake at 1 day of hypoxia was not inhibited by cytochalasin B suggesting the involvement of additional glucose transporters. We uncovered hypoxia-regulated expression of sodium-dependent glucose transporters (SGLT1) in astrocytes indicating a novel adaptive strategy involving both SGLT1 and GLUT1 to regulate glucose intake in response to hypoxia. Overall, these findings suggest that although increased metabolic response is required for the onset of astrocyte adaptation to hypoxia, prolonged hypoxia requires a shift to an energy conservation mode. These findings may contribute to the understanding of the relative tolerance of astrocytes to hypoxia compared with neurons and provide novel therapeutic strategies aimed at maintaining brain function in cerebral pathologies involving hypoxia.  相似文献   

3.
Relating Cerebral Ischemia and Hypoxia to Insult Intensity   总被引:2,自引:1,他引:1  
The contributions of five variables believed to influence the brain's metabolism of O2 during hypoxia [duration, PaO2, delta CMRO2 (the difference between normal and experimental oxygen uptake), O2 availability (blood O2 content.CBF), and O2 deficit (delta CMRO2.duration)] were assessed by stepwise and multiple linear regression. Levels of brain tissue carbohydrates (lactate, glucose, and glycogen) and energy metabolites [ATP, AMP, and creatine phosphate (CrP)] were significantly influenced by O2 deficit during hypoxia, as was final CMRO2. After 60 min of reoxygenation, levels of tissue lactate, glucose, ATP, and AMP were related statistically to the O2 deficit during hypoxia; however, CMRO2 changes were always associated more significantly with O2 availability during hypoxia. Creatine (Cr) and CrP levels in the brain following reoxygenation were correlated more to delta CMRO2 during hypoxia. Changes in some brain carbohydrate (lactate and glucose), energy metabolite (ATP and AMP) levels, and [H+]i induced by complete ischemia were also influenced by O2 deficit. After 60 min of postischemic reoxygenation, brain carbohydrate (lactate, glucose, and glycogen) and energy metabolite (ATP, AMP, CrP, and Cr) correlated with O2 deficit during ischemia. We conclude that "O2 deficit" is an excellent gauge of insult intensity which is related to observed changes in nearly two-thirds of the brain metabolites we studied during and following hypoxia and ischemia.  相似文献   

4.
All the advancements in the understanding of the molecular and cellular processes leading to the great investments in developing neuroprotection against cerebral ischemic/hypoxic damage cannot obscure the simple fact that exhaustion of energy supplies is still at the basis of this disorder. Much has been investigated and postulated over the years about the quick collapse of energy metabolism that follows oxygen and glucose deprivation in the brain. Anaerobic glycolysis, recognized as a pathway of paramount importance in keeping energy supplies, although, at bare minimum, has also presented a dilemma-a significant increase in lactate production during ischemia/hypoxia (IH). The dogma of lactate as a useless end product of anaerobic glycolysis and its postulated role as a detrimental player in the demise of the ischemic cell has persisted for the past quarter of a century. This persistence is due to, at least in part, the well-documented phenomenon termed "the glucose paradox of cerebral ischemia," the unexplained aggravation of postischemic neuronal damage by preischemic hyperglycemia. Recent studies have questioned the deleterious effect of lactic acid, while others even have offered the possibility that this monocarboxylate serves as an aerobic energy substrate during recovery from IH. Reviewed here are studies published over the past few years along with some key older papers on the topic of energy metabolism and recovery of neural tissue from IH. New insights gained from both in vitro and in vivo studies on energy metabolism of the ischemic/hypoxic brain should improve our understanding of this key metabolic process and the chances of protecting this organ from the consequences of energy deprivation.  相似文献   

5.
Phosphatic metabolite (perchloric acid extractable) concentrations of cerebral tissues were analyzed by phosphorus-31 nuclear magnetic resonance (P-31 NMR) spectroscopy following external perfusion of the isolated rat brain (30 min or 60 min) under the following conditions: (a) constant perfusion pressure with either fluorocarbon- or erythrocyte-based medium, and (b) constant perfusate flow rate (3 ml/min) with the erythrocyte-based medium. Metabolite concentrations of control perfused brains were compared with those in nonperfused controls to provide a basis for detecting any qualitative or quantitative changes in cerebral metabolite composition. Metabolic responses of perfused brains to ischemia (incomplete ischemia, 83% reduction in flow for 10 min; transient complete ischemia for 1.5 or 2 min) were evaluated immediately after the ischemic episode and at selected time points during reperfusion (3 and 15 min). Alterations in cerebral metabolite levels induced by hypoxia were analyzed using a nonperfused rat brain model. Irrespective of the perfusion method employed, the phosphatic metabolites of control perfused rat brains were identical quantitatively to those of the nonperfused controls. Cerebral ischemia resulted in significantly increased levels of ADP, AMP + IMP, Pi, fructose 1,6-diphosphate, and glycerol 3-phosphate (global ischemia only), whereas ATP and phosphocreatine (PCr) levels declined significantly. The magnitude of these changes varied with the severity of the ischemia; however, following 15 min of control reperfusion metabolite levels had reverted to preischemic values. Significant perturbations in tissue phosphoethanolamine (3.84 delta resonance) content were evident at various time points during ischemia and postischemic recovery, which varied according to the perfusion conditions. In contrast to the changes observed in response to ischemia, hypoxia affected only cerebral high-energy phosphate levels. ATP and PCr levels were reduced, while a concomitant, essentially equimolar, increase in Pi and ADP was observed. The present studies indicate that in terms of phosphatic metabolites, the control equilibrated isolated perfused rat brain is quantitatively and qualitatively indistinguishable from the nonperfused rat brain in vivo regardless of the perfusion conditions (constant flow versus constant pressure). The metabolic responses to ischemia and hypoxia, as measured by P-31 NMR, were consistent with the pattern of changes reported elsewhere. Overall, P-31 NMR spectroscopic evaluation of the intact rat brain provides a potential experimental context for dynamic measures of cerebral metabolism under exogenously controlled conditions. Th  相似文献   

6.
The mechanisms controlling carbohydrate utilization in teleost fish are poorly understood, particularly in the heart. Tissue glucose uptake and cardiovascular characteristics were measured in the short-horned sculpin, Myoxocephalus scorpius, a species exhibiting low blood glucose levels, during normoxia and hypoxia to assess the role of adenosine receptors in the control of glucose uptake and anaerobic metabolism. As expected, hypoxia exposure (300 min at 2 mg/l dissolved oxygen) resulted in a bradycardia and plasma lactate accumulation, but glucose uptake rates did not change in heart, brain, gill, spleen, and white muscle. Plasma glucose-to-intracellular glucose ratios indicated that glucose uptake was the rate-limiting step in glucose utilization. The majority of intracellular glucose was unphosphorylated, however, suggesting that hexokinase is also important in controlling the tissue glucose gradient. During hypoxia, the cholinergic blocker atropine resulted in tachycardia but did not significantly change tissue glucose uptake rates or heart and brain adenosine levels. In contrast, the combined treatment of atropine and an adenosine receptor blocker [8-(p-sulfophenyl)theophylline] during hypoxia increased heart glucose uptake to levels fivefold higher than normoxic fish, with no additive effects on cardiovascular parameters. Significant tissue lactate accumulation was observed in this group of fish, signifying that adenosine receptors may depress anaerobic metabolism, even though tissue adenosine accumulation was absent during hypoxia. White muscle accumulated glucose during normoxia, suggesting the presence of gluconeogenic pathways or active uptake mechanisms not previously described in this tissue.  相似文献   

7.
METABOLIC CHANGES IN THE BRAINS OF MICE FROZEN IN LIQUID NITROGEN   总被引:1,自引:1,他引:0  
Abstract— Autolytic changes in the mouse brain, occurring during immersion of the animal in liquid nitrogen, were evaluated by measuring the tissue concentrations of glucose, lactate, pyruvate, α-oxoglutarate, phosphocreatine, creatine, ATP, ADP and AMP. The values thus obtained were compared with those obtained in paralysed mice under nitrous oxide anaesthesia, the brains of which were frozen in such a way that arterial blood pressure and oxygénation were upheld during the freezing. Immersion of unanaesthetized mice in liquid nitrogen gave rise to significant alterations in phosphocreatine, creatine, lactate, lactate/pyruvate ratio, ADP and AMP. A comparison with values obtained in paralysed and anaesthetized mice that were frozen by immersion in liquid nitrogen showed that the metabolic changes observed in the unanaesthetized animals could not be caused by an anaesthetic effect on the metabolic pattern. It is concluded that autolysis in the mouse brain occurs during immersion of the animal in a coolant, mainly because arterial hypoxia develops before the tissue is frozen. A comparison with previous results on rat cerebral cortex indicates that mice offer no advantage for studies of cerebral metabolites in unanaesthetized animals. In both species, accurate analyses of labile cerebral metabolites require that the brain is frozen in a way that prevents arterial hypoxia during the fixation of the tissue.  相似文献   

8.
9.
Dash RK  Li Y  Kim J  Beard DA  Saidel GM  Cabrera ME 《PloS one》2008,3(9):e3168
Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and energetics in skeletal muscle during physiological stresses such as ischemia, hypoxia, and exercise.  相似文献   

10.
Brain metabolism of glucose and lactate was analyzed by ex vivo NMR spectroscopy in rats presenting different cerebral activities induced after the administration of pentobarbital, alpha-chloralose, or morphine. The animals were infused with a solution of either [1-(13)C]glucose plus lactate or glucose plus [3-(13)C]lactate for 20 min. Brain metabolite contents and enrichments were determined from analyses of brain tissue perchloric acid extracts according to their post-mortem evolution kinetics. When amino acid enrichments were compared, both the brain metabolic activity and the contribution of blood glucose relative to that of blood lactate to brain metabolism were linked with cerebral activity. The data also indicated the production in the brain of lactate from glycolysis in a compartment other than the neurons, presumably the astrocytes, and its subsequent oxidative metabolism in neurons. Therefore, a brain electrical activity-dependent increase in the relative contribution of blood glucose to brain metabolism occurred via the increase in the metabolism of lactate generated from brain glycolysis at the expense of that of blood lactate. This result strengthens the hypothesis that brain lactate is involved in the coupling between neuronal activation and metabolism.  相似文献   

11.
Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.  相似文献   

12.
The objective of the present study was to compare energy substrate fluxes through metabolic pathways leading to mitochondrial citrate synthesis and release in normal and diseased rat hearts using 13C-substrates and mass isotopomer analysis by gas chromatography-mass spectrometry (GCMS). This study was prompted by our previous finding of a modulated citrate release by perfused rat hearts and by the possibility that a dysregulated myocardial citrate release represents a specific chronic alteration of energy metabolism in cardiac patients. The 15-week-old spontaneously hypertensive rat (SHR) was chosen as our animal model of disease and the Wistar-Kyoto (WKY) rat as its matched control. Ex vivo work-performing hearts were perfused with a semi-recirculating buffer containing physiological concentrations of unlabeled (glucose) and 13C-labeled ([U-13C3](lactate + pyruvate) and/or [1-13C]oleate) substrates. In parallel to the continuous monitoring of indices of the heart's functional and physiological status, the following metabolic parameters were documented: (i) citrate release rates and citric acid cycle intermediate tissue levels, (ii) the contribution of fatty acids as well as pyruvate decarboxylation and carboxylation to citrate synthesis, and (iii) lactate and pyruvate uptake and efflux rates. Working hearts from both rat species showed a similar percent contribution of carbohydrates for citrate synthesis through decarboxylation (70%) and carboxylation (10%). SHR hearts showed the following metabolic alterations: a higher citrate release rate, which was associated with a parallel increase in its tissue level, a lower contribution of oleate -oxidation to citrate synthesis, and an accelerated efflux rate of unlabeled lactate from glycolysis. These metabolic changes were not explained by differences in myocardial oxygen consumption, cardiac performance or efficiency, nor correlated with indices of tissue necrosis or ischemia. This study demonstrates how the alliance between ex vivo semi-recirculating working perfused rat hearts with 13C-substrates and mass isotopomer analysis by GCMS, can provide an unprecedented insight into the metabolic phenotype of normal and diseased rat hearts. The clinical relevance of metabolic alterations herein documented in the SHR heart is suggested by its resemblance to those reported in cardiac patients. Taken altogether, our results raise the possibility that the increased citrate release of diseased hearts results from an imbalance between citrate synthesis and utilization rates, which becomes more apparent under conditions of substrate abundance.  相似文献   

13.
The cysteine precursor L-2-oxothiazolidine-4-carboxylate (OTZ, procysteine) can raise cysteine concentration, and thus glutathione levels, in some tissues. OTZ has therefore been proposed as a prodrug for combating oxidative stress. We have synthesized stable isotope labeled OTZ (i.e. L-2-oxo-[5-(13)C]-thiazolidine-4-carboxylate, (13)C-OTZ) and tracked its uptake and metabolism in vivo in rat brain by (13)C magnetic resonance spectroscopy. Although uptake and clearance of (13)C-OTZ was detectable in rat brain following a bolus dose by in vivo spectroscopy, no incorporation of isotope label into brain glutathione was detectable. Continuous infusion of (13)C-OTZ over 20 h, however, resulted in (13)C-label incorporation into glutathione, taurine, hypotaurine and lactate at levels sufficient for detection by in vivo magnetic resonance spectroscopy. Examination of brain tissue extracts by mass spectrometry confirmed only low levels of isotope incorporation into glutathione in rats treated with a bolus dose and much higher levels after 20 h of continuous infusion. In contrast to some previous studies, bolus administration of OTZ did not alter brain glutathione levels. Even a continuous infusion of OTZ over 20 h failed to raise brain glutathione levels. These studies demonstrate the utility of in vivo magnetic resonance for non-invasive monitoring of antioxidant uptake and metabolism in intact brain. These types of experiments can be used to evaluate the efficacy of various interventions for maintenance of brain glutathione.  相似文献   

14.
Hypoxia-inducible factor (HIF) plays an important role in regulating gene expression in response to ischemia. Although activation of HIF-1 in muscle tissue was found during ischemia in vivo, the meaning and mechanisms in isolated cells are still incompletely understood. We studied activation of HIF-1 in skeletal muscle cells cultured in either their undifferentiated myoblast state or differentiated into myotubes. HIF-1 was activated in myoblasts and myotubes by hypoxia and simulated ischemia. Induction of adrenomedullin mRNA and, to a lesser extent, VEGF mRNA correlated well with the induction of HIF-1alpha protein in both cell types. Enzymes of glycolysis-like lactate dehydrogenase and pyruvate kinase showed upregulation of their mRNA only under hypoxic conditions but not during simulated ischemia. Phosphofructokinase mRNA showed no significant upregulation at all. Although HIF-1 was activated in myotubes during simulated ischemia, myotubes died preceded by a loss of ATP. Myoblasts survived simulated ischemia with no decrease in ATP or ATP turnover. Furthermore, pharmacological inhibition of HIF-1 hydroxylases by dimethyloxalylglycine (DMOG) increased HIF-1alpha accumulation and significantly upregulated the expression of adrenomedullin, VEGF, lactate dehydrogenase, and pyruvate kinase in myoblasts and myotubes. However, DMOG provided no protection from cell death. Our data indicate that HIF-1, although activated in myotubes during simulated ischemia, cannot protect against the loss of ATP and cell viability. In contrast, myoblasts survive ischemia and thus may play an important role during regeneration and HIF-1-induced revascularization.  相似文献   

15.
Lactate as a pivotal element in neuron-glia metabolic cooperation   总被引:17,自引:0,他引:17  
  相似文献   

16.
Brain is a highly-oxidative organ, but during activation, glycolytic flux is preferentially up-regulated even though oxygen supply is adequate. The biochemical and cellular basis of metabolic changes during brain activation and the fate of lactate produced within brain are important, unresolved issues central to understanding brain function, brain images, and spectroscopic data. Because in vivo brain imaging studies reveal rapid efflux of labeled glucose metabolites during activation, lactate trafficking among astrocytes and between astrocytes and neurons was examined after devising specific, real-time, sensitive enzymatic fluorescent assays to measure lactate and glucose levels in single cells in adult rat brain slices. Astrocytes have a 2- to 4-fold faster and higher capacity for lactate uptake from extracellular fluid and for lactate dispersal via the astrocytic syncytium compared to neuronal lactate uptake from extracellular fluid or shuttling of lactate to neurons from neighboring astrocytes. Astrocytes can also supply glucose to neurons as well as glucose can be taken up by neurons from extracellular fluid. Astrocytic networks can provide neuronal fuel and quickly remove lactate from activated glycolytic domains, and the lactate can be dispersed widely throughout the syncytium to endfeet along the vasculature for release to blood or other brain regions via perivascular fluid flow.  相似文献   

17.
Bacterial sepsis is frequently accompanied by increased blood concentration of lactic acid, which traditionally is attributed to poor tissue perfusion, hypoxia and anaerobic glycolysis. Therapy aimed at improving oxygen delivery to tissues often does not correct the hyperlactatemia, suggesting that high blood lactate in sepsis is not due to hypoxia. Various tissues, including skeletal muscle, demonstrate increased lactate production under well-oxygenated conditions when the activity of the Na+-K+ ATPase is stimulated. Although both muscle Na+-K+ ATPase activity and muscle plasma membrane content of Na+, K+-ATPase subunits are increased in sepsis, no studies in vivo have demonstrated correlation between lactate production and changes in intracellular Na+ and K+ resulting from increased Na+-K+ pump activity in sepsis. Plasma concentrations of lactate and epinephrine, a known stimulator of the Na+-K+ pump, were increased in rats made septic by E. coli injection. Muscle lactate content was significantly increased in septic rats, although muscle ATP and phosphocreatine remained normal, suggesting oxygen delivery remained adequate for mitochondrial energy metabolism. In septic rats, muscle intracellular ratio of Na+:K+ was significantly reduced, indicating increased Na+-K+ pump activity. These data thus demonstrate that increased muscle lactate during sepsis correlates with evidence of elevated muscle Na+-K+ ATPase activity, but not with evidence of impaired oxidative metabolism. This study also further supports a role for epinephrine in this process.  相似文献   

18.
Metabolic and work efficiencies during exercise in Andean natives   总被引:5,自引:0,他引:5  
Maximum O2 and CO2 fluxes during exercise were less perturbed by hypoxia in Quechua natives from the Andes than in lowlanders. In exploring how this was achieved, we found that, for a given work rate, Quechua highlanders at 4,200 m accumulated substantially less lactate than lowlanders at sea level normoxia (approximately 5-7 vs. 10-14 mM) despite hypobaric hypoxia. This phenomenon, known as the lactate paradox, was entirely refractory to normoxia-hypoxia transitions. In lowlanders, the lactate paradox is an acclimation; however, in Quechuas, the lactate paradox is an expression of metabolic organization that did not deacclimate, at least over the 6-wk period of our study. Thus it was concluded that this metabolic organization is a developmentally or genetically fixed characteristic selected because of the efficiency advantage of aerobic metabolism (high ATP yield per mol of substrate metabolized) compared with anaerobic glycolysis. Measurements of respiratory quotient indicated preferential use of carbohydrate as fuel for muscle work, which is also advantageous in hypoxia because it maximizes the yield of ATP per mol of O2 consumed. Finally, minimizing the cost of muscle work was also reflected in energetic efficiency as classically defined (power output per metabolic power input); this was evident at all work rates but was most pronounced at submaximal work rates (efficiency approximately 1.5 times higher than in lowlander athletes). Because plots of power output vs. metabolic power input did not extrapolate to the origin, it was concluded 1) that exercise in both groups sustained a significant ATP expenditure not convertible to mechanical work but 2) that this expenditure was downregulated in Andean natives by thus far unexplained mechanisms.  相似文献   

19.

Background

Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion.

Method

A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition.

Results

After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue.

Conclusion

The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.  相似文献   

20.
Abstract: Numerous studies using adult animal models suggest that dichloroacetate (DCA) may have neuroprotective properties by virtue of its ability to increase rates of metabolism and, therefore, clearance of brain lactic acidosis, which may accumulate during cerebral ischemia. We tested the hypothesis that postischemic DCA administration affects lactate and acid clearance to different extents in immature versus mature brain. 31P and 1H magnetic resonance spectroscopy were used to measure intracellular acid and lactate clearance rates in vivo in newborn and 1-month-old swine after a 14-min episode of transient near-complete global ischemia. Simultaneous monitoring of extracellular lactate efflux and clearance was measured in the same animals by in vivo microdialysis. Plasma glucose concentrations were elevated in order to study animals with severe cerebral lactic acidosis. Maximal levels of brain lactosis (16–20 µmol/g) and acidosis (pHintracellular 5.8–6.0) were reached during the first 10 min of recovery and were the same in age groups and in subgroups either acting as controls or treated with DCA (200 mg/kg) given from the last minute of ischemia to 5–7 min after ischemia. For newborns, DCA administration improved the postischemic clearance rate of cerebral acidosis and cerebral phosphocreatine, with similar trends for the clearance of lactosis and increased rates of recovery of nucleotide triphosphates, compared with controls. In contrast, DCA administration in 1-month-olds resulted in a modest trend for improvement of cerebral lactate clearance, but did not affect acid clearance or the recovery rate of phosphocreatine or nucleotide triphosphates. Extracellular brain lactate concentrations had similar relative increases and rates of decline for subgroups of either age treated with DCA versus controls. The results of this study indicate that postischemic DCA administration helps to resolve cerebral acidosis to a greater degree in immature than more mature brain, suggesting that DCA may have cerebroprotective properties for neonatal hypoxic-ischemic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号