首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Axial muscles used for oscillatory swimming are foundnot only in fish and other vertebrates but also in some protochordatesand invertebrates. Chaetognaths have unsegmented locomotor musculaturewith some unusual features, but larvacean tunicates and thetadpole larvae of ascidians show the simplest variant of thechordate segmented axial muscle arrangement for flexing a notochordalcolumn, where all muscle cells along one side are electricallycoupled. With amphioxus, the basic fish myotomal layout is established,with two main fibre types probably used for different patternsof swimming (as in fish). There are, however, several uniquefeatures, including the flattened fibre shape and the paramyosinsystem of the notochord. Agnatha have two fibre types in themyotomes, a third type perhaps being a developmental stage inthe ontogeny of fast fibres. In lampreys, the central fibresof the characteristic fibre sandwiches in the myotomes are flattened(though less so than in amphioxus); they have a dual innervationof unknown function seen also in the fast fibre system of manyGnathostome fish groups. Hagfish fast fibres are not flattenednor do they have a dual innervation. Gnathostome fish axialmuscles are strikingly uniform in design with two possible exceptions:(1) higher teleost fast fibres which, unlike those of othergroups, are multiply-innervated and (2) tonic fibres in a fewfish, which seem not to be involved in locomotion.  相似文献   

2.
The growth dynamics of red, pink and white fibres of the caudal and pectoral fin muscles are described in Carans malabaricus (Cuv. & Val.) in relation to their somatic growth. In all three fibre types growth occurred by an increase in fibre number and diameter in small size classes of fish and by an increase in diameter only in larger fish. The growth dynamics of the three fibre types were similar to those of the myotomal muscle fibres and paralleled the somatic growth pattern of this fish.  相似文献   

3.
In chicken, the main characteristic properties of muscle fibre types in slow anterior (ALD) and fast posterior (PLD) latissimus dorsii are acquired during post-hatching development. At day 4 it becomes possible to distinguish between alpha' and beta' fibre types in ALD muscle. At the same time, mATPase staining and NADH-TR activity permit recognition of alpha w and alpha R fibres within PLD muscle. During further development, muscle fibre typology progressively changes towards the adult slow and fast type. Chronic stimulation at a slow rhythm (5 Hz) of PLD prevents the change in relative proportions of alpha R and alpha W fibres within the muscle that occurs in normal post-hatching development and increases the number of beta R fibres. Moreover, oxidative activity is increased in all muscle fibre types following stimulation. In ALD muscle, chronic stimulation at a fast rhythm (40 Hz) results in a decrease in oxidative activity and inhibits the differentiation of alpha' and beta' muscle fibre types. This study demonstrates that in young chicken, the pattern of activity influences the differenciation of fibre types in slow and fast muscles.  相似文献   

4.
Summary Cryostat sections incubated for myofibrillar ATPase, SDH, LDH, and -GPDH as well as p-phenylene-diamine stained semithin sections were used to define muscle fibre types in the trunk musculature of the cod (Gadus morhua, L.).Three zones (superficial, intermediate, deep) containing different muscle fibre types are present within both epaxial and hypaxial parts of each myomere subjacent to the lateral line.Atypical relations concerning myofibrillar ATPase activity probably reflects instability of myosin during storage of frozen tissue. The histochemical reaction does not distinguish between myofibrillar and mitochondrial ATPase in cod muscle.Based on ATPase and SDH activities, seven different histochemical profiles of muscle fibres can be identified in trunk musculature of this teleost fish. Attempts to homologize these fibre types with those in cyclostomes or those in higher animals proved futile. The higher number of histochemically defined muscle fibre types in cod might be explained by developmental processes and an admixture of immature fibres throughout life.  相似文献   

5.
1. Combined histochemical and biochemical single-fibre analyses [Staron & Pette (1987) Biochem. J. 243, 687-693], were used to investigate the rabbit tibialis-anterior fibre population. 2. This muscle is composed of four histochemically defined fibre types (I, IIC, IIA and IIB). 3. Type I fibres contain slow myosin light chains LC1s and LC2 and the slow myosin heavy chain HCI, and types IIA and IIB contain the fast myosin light chains LC1f, LC2f and LC3f and the fast heavy chains HCIIa and HCIIb respectively. 4. A small fraction of fibres (IIAB), histochemically intermediate between types IIA and IIB, contain the fast light myosin chains but display a coexistence of HCIIa and HCIIb. 5. Similarly to the soleus muscle, C fibres in the tibialis anterior muscle contain both fast and slow myosin light chains and heavy chains. The IIC fibres show a predominance of the fast forms and the IC fibres (histochemically intermediate between types I and IIC) a predominance of the slow forms. 6. A total of 60 theoretical isomyosins can be derived from these findings on the distribution of fast and slow myosin light and heavy chains in the fibres of rabbit tibialis anterior muscle.  相似文献   

6.
The microscopic organization and ultrastructure of the submandibular muscle of 10 species of Amphibia were compared. Among other fibre features the diameter of fibres, their content of mitochondria and fat, organization of sarcomeres: morphology of Z-line, M-band and sarcoplasmic reticulum were taken into consideration and 4 main types of muscle fibres were distinguished. They correspond to tonic (slow) and phasic (red, white and intermediate) ones. Slight variety of fibre morphology and of fibre elements among the examined species was found. Special attention to the variety of fibre morphology among the established types has been paid and the existence of continuous "spectrum" of fibres was suggested. The correlation of frequency of fibres of particular types with the body size, gular oscillation frequency, and some other characteristics of the submandibular muscle in the examined species was discussed. Also the zonal arrangement of muscle according to the fibre types, as well as possible dynamic nature of muscle fibres were emphasised.  相似文献   

7.
LINDHOLM, ARNE and KARIN PIEHL: Fibre composition, enzyme activity and concentrations of metabolites and electrolytes in muscles of standardbred horses. Acta vet. scand. 1974, 15, 287–309. — Measurements of metabolites, electrolytes, water, RNA and protein concentrations, the activity of certain muscle enzymes (SDH and PFK) and muscle fibre composition were made on biopsy specimens from the gluteus medius muscle of 68 standardbred horses, ½ to 8 years old. The muscle fibres were classified in 3 major categories, slow twitch (ST), fast twitch and high oxidative (FTH) and fast twitch (FT) fibres. The percentage of FTH fibres was higher after the age of 4 years, averaging 54 %. ST fibres comprised 24 % and this value remained unchanged. Glycogen concentration increased with age and averaged 95 and 126 mmol × kg−1 wet muscle in the youngest and oldest age groups, respectively. Lactate and pyruvate concentrations were markedly decreased, whereas ATP, CP, G-6-P and glucose were unaffected with age. Water content averaged 75 % in all age groups, whereas Na+ concentration increased, K+ concentration decreased and Mg2+ concentration remained unchanged with increasing age. SDH activity in ½- and 8-year old horses increased from 6.1 to 13.6 μmol × (g×min.)−1. PFK activity reached a peak at the age of 4 years after which it declined. With the data presented as a background, measurements on muscle biopsies may be a new aid in diagnosing diseases in horses and even in evaluating treatment. Of special interest might be investigations of muscle biopsy specimens as a base in the formation of more adequate training methods in race-horses. electrolytes; fibre types; glycogen storage; horse skeletal muscle; phosphofructokinase; succinate dehydrogenase.  相似文献   

8.
A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.  相似文献   

9.
  • 1.1. Polymorphism of native myosin and myosin heavy chain (MHC) of fish skeletal muscles was analysed by pyrophosphate and SDS-gel electrophoreses.
  • 2.2. Depending on the species, three or four myosin isoforms were detected in the white muscle, one or two isoforms in the pure red muscle, and four isomyosins were found in the red muscle composed of red and pink (intermediate) fibres.
  • 3.3. It is suggested that all main types of fish muscle fibre (red, intermediate and white) differ in myosin isoform content.
  • 4.4. Myosin heavy chain of the red muscle is a distinct protein from that of the white muscle. However, structural differences between these proteins vary among species.
  相似文献   

10.
Summary A histochemical study was carried out on muscle fibre types in the myotomes of post-larval and adult stages of seven species of notothenioid fish. There was little interspecific variation in the distribution of muscle fibre types in post-larvae. Slow fibres (diameter range 15–60 m) which stained darkly for succinic dehydrogenase activity (SDHase) formed a superficial layer 1–2 fibres thick around the entire lateral surface of the trunk. In all species a narrow band of very small diameter fibres (diameter range 5–62 m), with only weak staining activity, occurred between the skin and slow fibre layer. These have the characteristics of tonic fibres found in other teleosts. The remainder of the myotome was composed of fast muscle fibres (diameter range 9–75 m), which stain weakly for SDHase, -glycerophosphate dehydrogenase, glycogen and lipid. Slow muscle fibres were only a minor component of the trunk muscles of adult stages of the pelagic species Champsocephalus gunnari and Pseudochaenichthys georgianus, consistent with a reliance on pectoral fin swimming during sustained activity. Of the other species examined only Psilodraco breviceps and Notothenia gibberifrons had more than a few percent of slow muscle in the trunk (20%–30% in posterior myotomes), suggesting a greater involvement of sub-carangiform swimming at cruising speeds. The ultrastructure of slow fibres from the pectoral fin adductor and myotomal muscles of a haemoglobinless (P. georgianus) and red-blooded species (P. breviceps), both active swimmers, were compared. Fibres contained loosely packed, and regularly shaped myofibrils numerous mitochondria, glycogen granules and occasional lipid droplets. Mitochondria occupied >50% of fibre volume in the haemoglobinless species P. georgianus, each myofibril was surrounded by one or more mitochondria with densely packed cristae. No significant differences, however, were found in mean diameter between fibres from red-blooded and haemoglobinless species. The activities of key enzymes of energy metabolism were determined in the slow (pectoral) and fast (myotomal) muscles of N. gibberifrons. In contrast to other demersal Antarctic fish examined, much higher glycolytic activities were found in fast muscle fibres, probably reflecting greater endurance during burst swimming.  相似文献   

11.
AMP-deaminase activity was measured in white muscle from a wide range of fish, including one cyclostome, 13 chondrosteans, and one teleost to elucidate the pattern of the AMP-deaminase activity in white muscle of fish. Compared to a mammalian (rat) muscle extract, low enzyme activities are found in the cyclostome and two elasmobranchs from two families (Scyliorhinidae, Hexanchidae). In contrast, higher AMP-deaminase activities, similar to mammals, are expressed in Squalidae, all families of skates, Chimaeridae and in the teleostean fish. We then compared AMP-deaminase activities in red and white muscles from two representative elasmobranch fish, the dogfish (Scyliorhinus canicula) and the thornback ray (Raja clavata). The fibre type composition and distribution of the locomotory musculature were determined in these two elasmobranchs to establish a relationship between the morphology, the type of fibres of the locomotion-implicated muscles and the AMP-deaminase activity. Experimental data are discussed with respect to the layout of fibres in the myotome. In both species, three fibre types were identified. In the two fish myotomes, most of the axial muscles are white fibres while red fibres constitute a thin sheet. Some differences were observed between the two species in the distribution of intermediate fibres: in dogfish, these are located between the red and white fibres; in thornback ray, some are dispersed within the white fibre region, while others form an intermediary layer like in dogfish. These results suggest that in the course of evolution, an amplification of the AMP-deaminase activity in muscle was coupled with increase of complexity of the muscular structure.  相似文献   

12.
Electrophoresis, immunoblots, immunohistochemistry and image analysis methods were applied to characterise canine trunk and appendicular muscle fibres according to their myosin heavy chain (MyHC) composition and to determine, on a fibre-to-fibre basis, the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH) and glycerol-3-phosphate dehydrogenase (GPDH) activities and glycogen and phospholamban (PLB) content] and morphological (cross-sectional area and capillary and nuclear densities) features of individual myofibres. An accurate delineation of MyHC-based fibre types was obtained with the developed immunohistochemical method, which showed high sensitivity and objectivity to delineate hybrid fibres with overwhelming dominance of one MyHC isoform. Phenotypic differences in contractile, metabolic and morphological properties seen between fibre types were related to MyHC content. All canine skeletal muscle fibre types had a relatively high histochemical SDH activity but significant differences existed in the order IIA>I>IIX. Mean GPDH was ranked according to fibre type such that I<IIA<IIX. Type IIA fibres were the smallest, type IIX fibres the largest and type I of intermediate size. Capillary and nuclear density decreased in the order IIA>I>IIX. Hybrid fibres, which represented nearly one third of the whole pool of skeletal muscle fibres analysed, had mean values intermediate between their respective pure phenotypes. Slow fibres expressed the slow SERCA isoform and PLB, whereas type II fibres expressed the fast SERCA isoform. Discrimination of myofibres according to their MyHC content was possible on the basis of their contractile, metabolic and morphological features. These intrafibre interrelationships suggest that myofibres of control dogs exhibit a high degree of co-ordination in their physiological, biochemical and morphological characteristics. This study demonstrates that canine skeletal muscle fibres have been misclassified in numerous previous studies and offers useful baseline data and new prospects for future work on muscle-fibre-typing in canine experimental studies.  相似文献   

13.
A high-performance liquid chromatographic (HPLC) procedure is described for the determination of myoglobin in extracts of small samples of tissue from the three different fibre types in the swimming muscles of three species of sharks, Etmopterus spinax, Galeus melastomus and Scyliorhinus canicula . The method, which is based on the separation of myoglobin from haemoglobin from haemoglobin based on HPLC using a gel permeation chromatography column, has a detection limit of about 3 pmol myoglobin (Mb). In addition it has the added advantage of specific identification by its Soret band absorption and quantification. In all three species, the three fibre types of the muscle are completely separated and can be isolated at a high degree of purity. In red fibres the myoglobin content varied between 565 nmol mg−1 wet weight ( Scyliorhinus ) and 170 nmol mg−1 wet weight ( Galeus ). Intermediate fibres contained from 215 to 57, and white fibres from 11 to zero nmol mg−1 wet weight. The myoglobin content is closely correlated to the vascularization as well as to the amounts of mitochondria in the different fibre types.  相似文献   

14.
Summary Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

15.
C Spamer  D Pette 《Histochemistry》1977,52(3):201-216
Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

16.
Compared with fish of a slow-growing strain, fast-growing rainbow trout exhibited significantly smaller white fibre diameters, throughout development from hatching to 24 cm body length, although possessing similar total number of fibres. In contrast, in red muscle, no differences were observed in fibre diameter between the two strains, but the fast growing fish showed a significantly higher number of red fibres. The differences in growth rate between the two strains were related to the mean white fibre diameter and were found to be matched by proportional adjustments in recruitment of new fibres to the growing muscle. Thus, the largest and fastestgrowing strain showed evidence of sustained higher recruitment of muscle fibres that endowed this strain with the potential to maintain rapid somatic growth for longer and accomplish greater muscle growth.  相似文献   

17.
Frog sartorius muscles were superfused for 40 min with solutions of K-free Ringer, normal Ringer containing ouabain, or K-free Ringer containing ouabain. Changes in myoplasmic K and Na were measured with ion-selective microelectrodes; changes in total fibre K and Na were measured by means of atomic absorption spectroscopy; and changes in total fibre water content were obtained from wet and dry weights. Application of a two-compartment model permitted one to calculate (i) the K, Na, and water changes in the myofibrils and in the surrounding myoplasm (extramyofibrillar space); (ii) the changes in the transmyofibrillar Donnan potential (ED); and (iii) the changes in the ratio of the apparent association constants (kNa/kK) of the myofilament charge sites to Na and K. In the resting fibres, the K, Na, and water content of the myofibrils were calculated to be 82, 87, and 80% of total fibre content, respectively; ED was calculated as -4.5 mV; kNa/kK was calculated as 1.4. After a 40-min ouabain treatment, 12 mmol (per kg fibre water) of intrafibre K exchanged with 7.5 mmol of extrafibre Na, 6.4 mmol of myofibrillar K exchanged with an equal amount of extramyofibrillar Na, ED increased to -8.3 mV, and kNa/kK remained relatively constant. After a 40-min K-free treatment, the fibres gained 5.5 mmol of Na without any change in fibre K or water, the myofibrils shifted 9.3% of their water into the extramyofibrillar space instead of exchanging K for Na, ED increased to -10.7 mV, and kNa/kK decreased to 0.47.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Using a variety of histochemical methods -mATPase staining after alkaline and acid preincubations, NADH-TR and alpha-MGPDH- we have investigated the fibre types in porcine skeletal muscle. The results reveal that four major fibre types -I, IIA, IIB and II*- can be separated histochemically in Longissimus lumborum muscle of Landrace pigs. The histochemical properties of the muscle fibre type II* are very similar to that of type IIX described in other mammals. The existence of IIX fibres in pig muscle has been recently demonstrated by molecular biology techniques and our results validate the use of histochemistry (mATPase) as an easy methodology to differentiate the three fast myosins (type II fibres) in pig muscle.  相似文献   

19.
The presumptive tonic muscles fibres of Cottoperca gobio, Champsocephalus esox, Harpagifer bispinis, Eleginops maclovinus, Patagontothen tessellata, P. cornucola and Paranotothenia magellanica stained weakly or were unstained for glycogen, lipid, succinic dehydrogenase (SDHase) and myosin ATPase (mATPase) activity. Slow, intermediate and fast twitch muscle fibres, distinguished on the basis of the pH stability of their mATPases, showed intense, moderate and low staining activity for SDHase, respectively. Slow fibres were the major component of the pectoral fin adductor profundis muscle. The proportion of different muscle fibre types varied from the proximal to distal end of the muscle, but showed relatively little variation between species. The myotomes contained a lateral superficial strip of red muscle composed of presumptive tonic, slow twitch and intermediate fibres, thickening to a major wedge at the horizontal septum. All species also had characteristic secondary dorsal and ventral wedges of red muscle. The relative abundance and localization of muscle fibre types in the red muscle varied between species and with body size in the protandric hermaphrodite E. maclovinus. The frequency distribution of diameters for fast twitch muscle fibres, the major component of deep white muscle, was determined in fish of a range of body sizes. The absence of fibres <20 μm diameter was used as a criterion for the cessation of muscle fibre recruitment. Fibre recruitment had stopped in P. tessellata of 13·8 cm LT and E. maclovinus of 32·8 cm LT, equivalent to 49 and 36·5% of their recorded maximum sizes respectively. As a result in 20‐cm P. tessellata, the maximum fibre diameter was 300 μm and 36% of fibres were in excess of 200 μm. The unusually large maximum fibre diameter, the general arrangement of the red muscle layer and the extreme pH lability of the mATPase of fast twitch fibres are all common characters of the sub‐Antarctic and Antarctic Notothenioids, including Cottoperca gobio, the suggested sister group to the Notothenidae.  相似文献   

20.
The aim of our study was to explore the age related changes of the fibre type composition of the human psoas major muscle. Moreover, we wanted to compare the fibre type composition of the left and right muscle. Muscle samples were collected from 15 young and 15 old males. Type I, IIA and IIX muscle fibres were typed using myosin heavy chain identification. The serial transverse sections were analysed using a light microscope. Results of our study showed that the age-related atrophy affected all three fibre types. Type IIA fibres were affected most profoundly while type I fibres were affected most weakly. The percentage of the different fibre types did not change during aging. There were no differences in the fibre type composition between the left and right muscle. Human psoas major muscle undergoes normal aging changes with the atrophy of all three fibre types, whereas atrophy most profoundly affects type IIA fibres. No differences in the fibre type composition between the left and right muscle point to the equal engagement of both legs in normal everyday activities of human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号