首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy-dependent changes in the gonococcal transferrin receptor   总被引:12,自引:1,他引:11  
The pathogenic Neisseria spp. are capable of iron utilization from host iron-binding proteins including transferrin and lactoferrin. Transferrin iron utilization is an energy-dependent, receptor-mediated event in which two identified transferrin-binding proteins participate. One of these proteins, TbpA, is homologous to the TonB-dependent family of outer membrane receptors that are required for high-affinity uptake of vitamin B12 and ferric siderophores. The 'TonB box' is a conserved domain near the amino-terminus of these proteins that has been implicated in interaction with TonB. Interaction between a periplasmic domain of TonB and the TonB box allows energy transduction to occur from the cytoplasmic membrane to the energy-dependent receptor in the outer membrane. We created a TonB box mutant of gonococcal TbpA and demonstrated that its binding and protease accessibility characteristics were indistinguishable from those of gonococcal Ton system mutants. The protease exposure of the second transferrin-binding protein, TbpB, was affected by the energization of TbpA, consistent with an interaction between these proteins. TbpB expressed by the de-energized mutants was readily accessible to protease, similar to TbpB expressed in the absence of TbpA. The de-energized mutants exhibited a marked decrease in transferrin diffusion rate, suggesting that receptor energization was necessary for ligand release. We propose a model to explain the observed Ton-dependent changes in the binding parameters and exposures of TbpA and TbpB.  相似文献   

2.
The transferrin receptor of Neisseria meningitidis is composed of the transmembrane protein TbpA and the outer membrane protein TbpB. Both receptor proteins have the capacity to independently bind their ligand human transferrin (htf). To elucidate the specific role of these proteins in receptor function, isothermal titration calorimetry was used to study the interaction between purified TbpA, TbpB or the entire receptor (TbpA + TbpB) with holo- and apo-htf. The entire receptor was shown to contain a single high affinity htf-binding site on TbpA and approximately two lower affinity binding sites on TbpB. The binding sites appear to be independent. Purified TbpA was shown to have strong ligand preference for apo-htf, whereas TbpA in the receptor complex with TbpB preferentially binds the holo form of htf. The orientation of the ligand specificity of TbpA toward holo-htf is proposed to be the physiological function of TbpB. Furthermore, the thermodynamic mode of htf binding by TbpB of isotypes I and II was shown to be different. A protocol for the generation of active, histidine-tagged TbpB as well as its individual N- and C-terminal domains is presented. Both domains are shown to strongly interact with each other, and isothermal titration calorimetry and circular dichroism experiments provide clear evidence for this interaction causing conformational changes. The N-terminal domain of TbpB was shown to be the site of htf binding, whereas the C-terminal domain is not involved in binding. Furthermore, the interactions between TbpA and the different domains of TbpB have been demonstrated.  相似文献   

3.
The transferrin iron acquisition system of Neisseria gonorrhoeae consists of two dissimilar transferrin binding proteins (Tbp) A and B. TbpA is a TonB dependent transporter while TbpB is a lipoprotein that makes iron acquisition from transferrin (Tf) more efficient. In an attempt to further define the individual roles of these receptors in the process of Tf-iron acquisition, the kinetics of the receptor proteins in regards to ligand association and dissociation were evaluated. Tf association with TbpB was rapid as compared to TbpA. Tf dissociation from the wild-type receptor occurred in a biphasic manner; an initial rapid release was followed by a slower dissociation over time. Both TbpA and TbpB demonstrated a two-phase release pattern; however, TbpA required both TonB and TbpB for efficient Tf dissociation from the cell surface. The roles of TbpA and TbpB in Tf dissociation were further examined, utilizing previously created HA fusion proteins. Using a Tf-utilization deficient TbpA-HA mutant, we concluded that the slower rate of ligand dissociation demonstrated by the wild-type transporter was a function of successful iron internalization. Insertion into the C-terminus of TbpB decreased the rate of Tf dissociation, while insertion into the N-terminus had no effect on this process. From these studies, we propose that TbpA and TbpB function synergistically during the process of Tf iron acquisition and that TbpB makes the process of Tf-iron acquisition more efficient at least in part by affecting association and dissociation of Tf from the cell surface.  相似文献   

4.
Iron scavenging by Neisseria gonorrhoeae is accomplished by the expression of receptors that are specific for host iron-binding proteins, such as transferrin and lactoferrin. Efficient transferrin-iron acquisition is dependent on the combined action of two proteins, designated TbpA and TbpB. TbpA is a TonB-dependent outer membrane receptor, whereas TbpB is lipid modified and serves to increase the efficiency of transferrin-iron uptake. Both proteins, together or separately, can be isolated from the gonococcal outer membrane by using affinity chromatography techniques. In the present study, we identified an additional protein in transferrin-affinity preparations, which had an apparent molecular mass of 45 kDa. The ability to copurify this protein by transferrin affinity was dependent upon the presence of TbpA and not TbpB. The amino-terminal sequence of the 45-kDa protein was identical to the amino terminus of gonococcal TonB, indicating that TbpA stably interacted with TonB, without the addition of chemical cross-linkers. Using immunoprecipitation, we could recover TbpA-TonB complexes without the addition of transferrin, suggesting that ligand binding was not a necessary prerequisite for TonB interaction. In contrast, a characterized TonB box mutant of TbpA did not facilitate interaction between these two proteins such that complexes could be isolated. We generated an in-frame deletion of gonococcal TonB, which removed 35 amino acids, including a Neisseria-specific, glycine-rich domain. This mutant protein, like the parental TonB, energized TbpA to enable growth on transferrin. Consistent with the functionality of this deletion derivative, TbpA-TonB complexes could be recovered from this strain. The results of the present study thus begin to define the requirements for a functional interaction between gonococcal TbpA and TonB.  相似文献   

5.
Gram-negative bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae, and Neisseriaceae families rely on an iron acquisition system that acquires iron directly from host transferrin (Tf). The process is mediated by a surface receptor composed of transferrin-binding proteins A and B (TbpA and TbpB). TbpA is an integral outer membrane protein that functions as a gated channel for the passage of iron into the periplasm. TbpB is a surface-exposed lipoprotein that facilitates the iron uptake process. In this study, we demonstrate that the region encompassing amino acids 7-40 of Actinobacillus pleuropneumoniae TbpB is required for forming a complex with TbpA and that the formation of the complex requires the presence of porcine Tf. These results are consistent with a model in which TbpB is responsible for the initial capture of iron-loaded Tf and subsequently interacts with TbpA through the anchor peptide. We propose that TonB binding to TbpA initiates the formation of the TbpB-TbpA complex and transfer of Tf to TbpA.  相似文献   

6.
Iron, an essential nutrient for most microorganisms, is sequestered by the host to decrease the concentration of iron available to bacterial pathogens. Neisseria gonorrhoeae , the causative agent of gonorrhoea, can acquire iron by direct interaction with human iron-binding proteins, including the serum glycoprotein, transferrin. Iron internalization from host transferrin requires the expression of a bacterial receptor, which specifically recognizes the human form of transferrin. Two gonococcal transferrin-binding proteins have been implicated in transferrin receptor function, TbpA and TbpB. We constructed a gonococcal transferrin receptor mutant without the introduction of additional antibiotic resistance markers and tested its ability to cause experimental urethritis in human male volunteers. The transferrin receptor mutant was incapable of initiating urethritis, although the same inoculum size of the wild-type parent strain, FA1090, causes urethritis in >90% of inoculated volunteers. To our knowledge, this is the first experimental demonstration that a bacterial iron acquisition system is an essential virulence factor for human infection.  相似文献   

7.
Pathogenic bacteria in the Neisseriaceae possess a surface receptor mediating iron acquisition from human transferrin (hTf) that consists of a transmembrane iron transporter (TbpA) and a surface‐exposed lipoprotein (TbpB). In this study, we used hydrogen/deuterium exchange coupled to mass spectrometry (H/DX‐MS) to elucidate the effects on hTf by interaction with TbpB or derivatives of TbpB. An overall conserved interaction was observed between hTf and full‐length or N‐lobe TbpB from Neisseria meningitidis strains B16B6 or M982 that represent two distinct subtypes of TbpB. Changes were observed exclusively in the C‐lobe of hTf and were caused by the interaction with the N‐lobe of TbpB. Regions localized to the ‘lip’ of the C1 and C2 domains that flank the interdomain cleft represent sites of direct contact with TbpB whereas the peptides within the interdomain cleft that encompass iron binding ligands are inaccessible in the closed (holo) conformation. Although substantial domain separation upon binding TbpB cannot be excluded by the H/DX‐MS data, the preferred model of interaction involves binding hTf C‐lobe in the closed conformation. Alternate explanations are provided for the substantial protection from deuteration of the peptides encompassing iron binding ligands within the interdomain cleft but cannot be differentiated by the H/DX‐MS data.  相似文献   

8.
Gram-negative porcine pathogens from the Pasteurellaceae family possess a surface receptor complex capable of acquiring iron from porcine transferrin (pTf). This receptor consists of transferrin-binding protein A (TbpA), a transmembrane iron transporter, and TbpB, a surface-exposed lipoprotein. Questions remain as to how the receptor complex engages pTf in such a way that iron is positioned for release, and whether divergent strains present distinct recognition sites on Tf. In this study, the TbpB-pTf interface was mapped using a combination of mass shift analysis and molecular docking simulations, localizing binding uniquely to the pTf C lobe for multiple divergent strains of Actinobacillus plueropneumoniae and suis. The interface was further characterized and validated with site-directed mutagenesis. Although targeting a common lobe, variants differ in preference for the two sublobes comprising the iron coordination site. Sublobes C1 and C2 participate in high affinity binding, but sublobe C1 contributes in a minor fashion to the overall affinity. Further, the TbpB-pTf complex does not release iron independent of other mediators, based on competitive iron binding studies. Together, our findings support a model whereby TbpB efficiently captures and presents iron-loaded pTf to other elements of the uptake pathway, even under low iron conditions.  相似文献   

9.
Analysis of bovine respiratory isolates of Pasteurella multocida demonstrated that six of nine strains tested were capable of growth dependent upon bovine transferrin and of specifically binding ruminant transferrins. A single 82-kDa protein was affinity isolated from the P. multocida strains with immobilized bovine transferrin. In contrast to what has been observed in other species, binding of this protein to immobilized transferrin was specifically blocked by the N-lobe subfragment of bovine transferrin. A single gene encoding the 82-kDa protein was flanked by a leucyl-tRNA synthetase gene and an IS1060 element, in contrast to other species where genes encoding the two receptor proteins (TbpB and TbpA) are found in an operonic arrangement. A similar gene arrangement was observed in all of the receptor-positive strains, in spite of the observation that they belonged to different genomic groups. Analysis of the deduced amino acid sequence of the receptor protein indicated that it is a member of the TonB-dependent outer membrane receptor family, and although it is related to transferrin and lactoferrin receptor proteins (TbpAs and LbpAs) from other species, it differs substantially from other members of this group. Amino acid alignments suggest that the reduced size (20 kDa smaller) of the P. multocida TbpA is primarily due to the absence of larger predicted external loops. Collectively these results suggest that P. multocida has a single, novel receptor protein (TbpA) that is capable of efficiently mediating iron acquisition from bovine transferrin without the involvement of a second receptor protein (TbpB).  相似文献   

10.
The ability to acquire iron directly from host Tf (transferrin) is an adaptation common to important bacterial pathogens belonging to the Pasteurellaceae, Moraxellaceae and Neisseriaceae families. A surface receptor comprising an integral outer membrane protein, TbpA (Tf-binding protein A), and a surface-exposed lipoprotein, TbpB (Tf-binding protein B), mediates the iron acquisition process. TbpB is thought to extend from the cell surface for capture of Tf to initiate the process and deliver Tf to TbpA. TbpA functions as a gated channel for the passage of iron into the periplasm. In the present study we have mapped the effect of TbpA from Actinobacillus pleuropneumoniae on pTf (porcine Tf) using H/DX-MS (hydrogen/deuterium exchange coupled to MS) and compare it with a previously determined binding site for TbpB. The proposed TbpA footprint is adjacent to and potentially overlapping the TbpB-binding site, and induces a structural instability in the TbpB site. This suggests that simultaneous binding to pTf by both receptors would be hindered. We demonstrate that a recombinant TbpB lacking a portion of its anchor peptide is unable to form a stable ternary TbpA-pTf-TbpB complex. This truncated TbpB does not bind to a preformed Tf-TbpA complex, and TbpA removes pTf from a preformed Tf-TbpB complex. Thus the results of the present study support a model whereby TbpB 'hands-off' pTf to TbpA, which completes the iron removal and transport process.  相似文献   

11.
Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two‐component regulatory system that also includes the sensor kinase MisS. The tbp genes were up‐regulated in the misR mutant under iron‐replete conditions but were conversely down‐regulated in the misR mutant under iron‐depleted conditions. The misR mutant was capable of transferrin‐iron uptake at only 50% of wild‐type levels, consistent with decreased tbp expression. We demonstrate that phosphorylated MisR specifically binds to the tbpBA promoter and that MisR interacts with five regions upstream of the tbpB start codon. These analyses confirm that MisR directly regulates tbpBA expression. The MisR binding sites in the gonococcus are only partially conserved in Neisseria meningitidis, which may explain why tbpBA was not MisR‐regulated in previous studies using this related pathogen. This is the first report of a trans‐acting protein factor other than Fur that can directly contribute to gonococcal tbpBA regulation.  相似文献   

12.
13.
The lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA . The putative product of this open reading frame, tentatively designated lbpB showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N . meningitidis . A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDS-containing sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.  相似文献   

14.
Transferrin-binding protein B (TbpB) is one component of a bipartite receptor in several gram-negative bacterial species that binds host transferrin and mediates the uptake of iron for growth. Transferrin and TbpB are both bilobed proteins, and the interaction between these proteins seems to involve similar lobe-lobe interactions. Synthetic overlapping peptide libraries representing the N lobe of TbpB from Moraxella catarrhalis were prepared and probed with labeled human transferrin. Transferrin-binding peptides were localized to six different regions of the TbpB N lobe, and reciprocal experiments identified six different regions of the C lobe of transferrin that bound TbpB. Truncations of the N lobe of TbpB that sequentially removed each transferrin-binding determinant were used to probe an overlapping peptide library of the C lobe of human transferrin. The removal of each TbpB N-lobe transferrin-binding determinant resulted in a loss of reactivity with peptides from the synthetic peptide library representing the C lobe of transferrin. Thus, individual peptide-peptide interactions between ligand and receptor were identified. A structural model of human transferrin was used to map surface regions capable of binding to TbpB.  相似文献   

15.
Neisseria gonorrhoeae is an obligate pathogen that hijacks iron from the human iron transport protein, holo-transferrin (Fe(2)-Tf), by expressing TonB-dependent outer membrane receptor proteins, TbpA and TbpB. Homologous to other TonB-dependent outer membrane transporters, TbpA is thought to consist of a β-barrel with an N-terminal plug domain. Previous reports by our laboratories show that the sequence EIEYE in the plug domain is highly conserved among various bacterial species that express TbpA and plays a crucial role in iron utilization for gonococci. We hypothesize that this highly conserved EIEYE sequence in the TbpA plug, rich in hard oxygen donor groups, binds with Fe(3+) through the transport process across the outer membrane through the β-barrel. Sequestration of Fe(3+) by the TbpA-plug supports the paradigm that the ferric iron must always remain chelated and controlled throughout the transport process. In order to test this hypothesis here we describe the ability of both the recombinant wild-type plug, and three small peptides that encompass the sequence EIEYE of the plug, to bind Fe(3+). This is the first report of the expression/isolation of the recombinant wild-type TbpA plug. Although CD and SUPREX spectroscopies suggest that a non-native structure is observed for the recombinant plug, fluorescence quenching titrations indicate that the wild-type recombinant TbpA plug binds Fe (3+) with a conditional log K(d) = 7 at pH 7.5, with no evidence of binding at pH 6.3. A recombinant TbpA plug with mutated sequence (NEIEYEN → NEIAAAN) shows no evidence of Fe(3+) binding under our experimental set up. Interestingly, in silico modeling with the wild-type plug also predicts a flexible loop structure for the EIEYE sequence under native conditions which once again supports the Fe(3+) binding hypothesis. These in vitro observations are consistent with the hypothesis that the EIEYE sequence in the wild-type TbpA plug binds Fe(3+) during the outer membrane transport process in vivo.  相似文献   

16.
Transferrin is one of the sources of iron that is most readily available to colonizing and invading pathogens. In this review, we look at iron uptake by the bacterial transferrin receptor that is found in the families Neisseriaceae, Pasteurellaceae and Moraxellaceae. This bipartite receptor consists of the TonB-dependent transporter, TbpA, and the surface lipoprotein, TbpB. In the past three decades, major advancements have been made in our understanding of the mechanism through which the Tbps take up iron. We summarize these findings and discuss how they relate to the diversity and specificity of the transferrin receptor. We also outline several of the remaining unanswered questions about iron uptake via the bacterial transferrin receptor and suggest directions for future research.  相似文献   

17.
Lactoferrin (Lf) is a bi-lobed, iron-binding protein found on mucosal surfaces and at sites of inflammation. Gram-negative pathogens from the Neisseriaceae and Moraxellaceae families are capable of using Lf as a source of iron for growth through a process mediated by a bacterial surface receptor that directly binds host Lf. This receptor consists of an integral outer membrane protein, lactoferrin binding protein A (LbpA), and a surface lipoprotein, lactoferrin binding protein B (LbpB). The N-lobe of the homologous transferrin binding protein B, TbpB, has been shown to facilitate transferrin binding in the process of iron acquisition. Currently there is little known about the role of LbpB in iron acquisition or how Lf interacts with the bacterial receptor proteins. No structural information on any LbpB or domain is available. In this study, we express and purify from Escherichia coli the full-length LbpB and the N-lobe of LbpB from the bovine pathogen Moraxella bovis for crystallization trials. We demonstrate that M. bovis LbpB binds to bovine but not human Lf. We also report the crystal structure of the N-terminal lobe of LbpB from M. bovis and compare it with the published structures of TbpB to speculate on the process of Lf mediated iron acquisition.  相似文献   

18.
Rabbit reticulocyte incorporation of iron from rabbit transferrin was independent of transferrin iron saturation but uptake from human transferrin was saturation dependent. Unlike human transferrin, rabbit transferrin does not surrender its iron from any unique preferred iron-binding site and can be described as functionally homogeneic.The two proteins also differ in their acid-base iron-binding properties. One human transferrin iron binding site retains an ability to bind iron at somewhat acid pH but this property is not shared by rabbit transferrin.  相似文献   

19.
Rabbit reticulocyte incorporation of iron from rabbit transferrin was independent of transferrin iron saturation but uptake from human transferrin was saturation dependent. Unlike human transferrin, rabbit transferrin does not surrender its iron from any unique preferred iron-binding site and can be described as functionally homogeneic. The two proteins also differ in their acid-base iron-binding properties. One human transferrin iron binding site retains an ability to bind iron at somewhat acid pH but this property is not shared by rabbit transferrin.  相似文献   

20.
Actinobacillus pleuropneumoniae is an important primary pathogen in pigs, which causes a highly contagious pleuropneumonia. As an adaptation to the iron-restricted environment of the host, A. pleuropneumoniae possesses iron acquisition pathways mediated by surface receptors that specifically bind transferrin from the host. The receptor is composed of two receptor proteins, transferrin-binding protein A and B (TbpA and B), which are both capable of binding to transferrin. An impairment of iron uptake mechanisms is likely to reduce virulence. For this reason, these two proteins can be useful as a candidate target for A. pleuropneumoniae vaccination. To do this, genes encoding the TbpA and B from a serotype 5 isolate of A. pleuropneumoniae were amplified from genomic DNA template by PCR and cloned into a pRSET prokaryotic expression vector, generating the pRSET-A.pp-TbpA and B. Escherichia coli BL21(DE3)pLysS competent cells were transformed with each construct followed by the induction of protein expression by the addition of IPTG. Bands corresponding to the predicted sizes (110 and 60 kDa) were seen on the SDS-PAGE. Polyclonal antibodies raised against recombinant TbpA and B from mice were reacted with bacterial proteins. This result indicates that the recombinant proteins can induce immunological responses and might be useful as candidate targets for A. pleuropneumoniae vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号