首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population dynamics and evolutionary dynamics can occur on similar time scales, and a coupling of these two processes can lead to novel population dynamics. Recent theoretical studies of coevolving predator-prey systems have concentrated more on the stability of such systems than on the characteristics of cycles when they are unstable. Here I explore the characteristics of the cycles that arise due to coevolution in a system in which prey can increase their ability to escape from predators by becoming either significantly larger or significantly smaller in trait value (i.e., a bidirectional trait axis). This is a reasonable model of body size evolution in some systems. The results show that antiphase population cycles and cryptic cycles (large population fluctuation in one species but almost no change in another species) can occur in the coevolutionary system but not systems where only a single species evolves. Previously, those dynamical patterns have only been theoretically shown to occur in single species evolutionary models and the coevolutionary model which do not involve a bi-directional axis of adaptation. These unusual dynamics may be observed in predator-prey interactions when the density dependence in the prey species is strong.  相似文献   

2.
We analyse dynamic models of the coevolution of continuous traits that determine the capture rate of a prey species by a predator. The goal of the analysis is to determine conditions when the coevolutionary dynamics will be unstable and will generate population cycles. We use a simplified model of the evolutionary dynamics of quantitative traits in which the rate of change of the mean trait value is proportional to the rate of increase of individual fitness with trait value. Traits that increase ability in the predatory interaction are assumed to have negative effects on another component of fitness. We concentrate on the role of equilibrial fitness minima in producing cycles. In this case, the mean trait of a rapidly evolving species minimizes its fitness and it is chased around this equilibrium by adaptive evolution in the other species. Such cases appear to be most likely if the capture rate of prey by predators is maximal when predator and prey phenotypes match each other. They are possible, but less likely when traits in each species determine a one-dimensional axis of ability related to the interaction. Population dynamics often increase the range of parameter values for which cycles occur, relative to purely evolutionary models, although strong prey self-regulation may stabilize an evolutionarily unstable subsystem.  相似文献   

3.
Summary We analyse dynamic models of the coevolution of continuous traits that determine the capture rate of a prey species by a predator. The goal of the analysis is to determine conditions when the coevolutionary dynamics will be unstable and will generate population cycles. We use a simplified model of the evolutionary dynamics of quantitative traits in which the rate of change of the mean trait value is proportional to the rate of increase of individual fitness with trait value. Traits that increase ability in the predatory interaction are assumed to have negative effects on another component of fitness. We concentrate on the role of equilibrial fitness minima in producing cycles. In this case, the mean trait of a rapidly evolving species minimizes its fitness and it is chased around this equilibrium by adaptive evolution in the other species. Such cases appear to be most likely if the capture rate of prey by predators is maximal when predator and prey phenotypes match each other. They are possible, but less likely when traits in each species determine a one-dimensional axis of ability related to the interaction. Population dynamics often increase the range of parameter values for which cycles occur, relative to purely evolutionary models, although strong prey self-regulation may stabilize an evolutionarily unstable subsystem.  相似文献   

4.
Many well-studied coevolutionary interactions between predators and prey or hosts and parasites are mediated by quantitative traits. In some interactions, such as those between cuckoos and their hosts, interactions are mediated by the degree of phenotype matching among species, and a significant body of theory has been developed to predict the coevolutionary dynamics and outcomes of such interactions. In a large number of other cases, however, interactions are mediated by the extent to which the phenotype of one species exceeds that of the other. For these cases-which are arguably more numerous-few theoretical predictions exist for coevolutionary dynamics and outcomes. Here we develop and analyze mathematical models of interspecific interactions mediated by the extent to which the quantitative trait of one species exceeds that of the other. Our results identify important differences from previously studied models based on trait matching. First, our results show that cyclical dynamics are possible only if the strength of coevolutionary selection exceeds a threshold and stabilizing selection acts on the interacting traits. Second, our results demonstrate that significant levels of genetic polymorphism can be maintained only when cyclical dynamics occur. This result leads to the unexpected prediction that maintenance of genetic polymorphism is enhanced by strong selection. Finally, our results demonstrate that there is no a priori reason to expect the traits of interacting species should match in any literal sense, even in the absence of gene flow among populations.  相似文献   

5.
Because coevolution takes place across a broad scale of time and space, it is virtually impossible to understand its dynamics and trajectories by studying a single pair of interacting populations at one time. Comparing populations across a range of an interaction, especially for long-lived species, can provide insight into these features of coevolution by sampling across a diverse set of conditions and histories. We used measures of prey traits (tetrodotoxin toxicity in newts) and predator traits (tetrodotoxin resistance of snakes) to assess the degree of phenotypic mismatch across the range of their coevolutionary interaction. Geographic patterns of phenotypic exaggeration were similar in prey and predators, with most phenotypically elevated localities occurring along the central Oregon coast and central California. Contrary to expectations, however, these areas of elevated traits did not coincide with the most intense coevolutionary selection. Measures of functional trait mismatch revealed that over one-third of sampled localities were so mismatched that reciprocal selection could not occur given current trait distributions. Estimates of current locality-specific interaction selection gradients confirmed this interpretation. In every case of mismatch, predators were “ahead” of prey in the arms race; the converse escape of prey was never observed. The emergent pattern suggests a dynamic in which interacting species experience reciprocal selection that drives arms-race escalation of both prey and predator phenotypes at a subset of localities across the interaction. This coadaptation proceeds until the evolution of extreme phenotypes by predators, through genes of large effect, allows snakes to, at least temporarily, escape the arms race.  相似文献   

6.
Although we often focus on the causes of geographic variation, understanding processes that act to reduce geographic variation is also important. Here, we consider a process whereby adaptive foraging across the landscape and directional selection exerted by a conifer seed predator, the common crossbill (Loxia curvirostra), potentially act to homogenize geographic variation in the defensive traits of its prey. We measured seed predation and phenotypic selection exerted by crossbills on black pine (Pinus nigra) at two sites in the Pindos Mountains, Greece. Seed predation by crossbills was over an order of magnitude higher at the site where cone scale thickness was significantly thinner, which was also the cone trait that was the target of selection at the high predation site. Additional comparisons of selection differentials demonstrate that crossbills exert selection on black pine that is consistent in form across space and time, and increases in strength with increasing seed predation. If predators distribute themselves in relation to the defensive traits of their prey and the strength of selection predators exert is proportional to the amount of predation, then predators may act to homogenize trait variation among populations of their prey in a process analogous to coevolutionary alternation with escalation.  相似文献   

7.
A central question in evolutionary biology is how coevolutionary history between predator and prey influences their interactions. Contemporary global change and range expansion of exotic organisms impose a great challenge for prey species, which are increasingly exposed to invading non‐native predators, with which they share no evolutionary history. Here, we complete a comprehensive survey of empirical studies of coevolved and naive predator?prey interactions to assess whether a shared evolutionary history with predators influences the magnitude of predator‐induced defenses mounted by prey. Using marine bivalves and gastropods as model prey, we found that coevolved prey and predator‐naive prey showed large discrepancies in magnitude of predator‐induced phenotypic plasticity. Although naive prey, predominantly among bivalve species, did exhibit some level of plasticity – prey exposed to native predators showed significantly larger amounts of phenotypic plasticity. We discuss these results and the implications they may have for native communities and ecosystems.  相似文献   

8.
The majority of species interact with at least several others. We develop simple genetic models of coevolution between three species where interactions are mediated by quantitative traits. We assume that one of the species has two quantitative traits, each of which governs its interaction with one of the other two species. We use this model to explore how genetic correlations between the two traits in the multivariate species shape the evolutionary dynamics and outcomes of three species interactions. Our results suggest that genetic correlations are most important when at least one of the interactions is between a predator and prey or parasite and host. In these cases, genetic correlations between traits lead to a wide variety of novel coevolutionary outcomes and dynamics. In particular, genetic correlations can affect the existence and stability of coevolutionary equilibrium points, and they can lead to recurrent or permanent maladaptation. When the three species interact only as competitors or mutualists, however, genetic correlations have no effect on the outcome of coevolution. In all cases, our results reveal the surprising conclusion that both positive and negative genetic correlations between traits have qualitatively identical effects on coevolutionary dynamics.  相似文献   

9.
Quantitative traits frequently mediate coevolutionary interactions between predator and prey or parasite and host. Previous efforts to understand and predict the coevolutionary dynamics of these interactions have generally assumed that standing genetic variation is fixed or absent altogether. We develop a genetically explicit model of coevolution that bridges the gap between these approaches by allowing genetic variation itself to evolve. Analysis of this model shows that the evolution of genetic variance has important consequences for the dynamics and outcome of coevolution. Of particular importance is our demonstration that coevolutionary cycles can emerge in the absence of stabilizing selection, an outcome not possible in previous models of coevolution mediated by quantitative traits. Whether coevolutionary cycles evolve depends upon the strength of selection, the number of loci, and the rate of mutation in each of the interacting species. Our results also generate novel predictions for the expected sign and magnitude of linkage disequilibria in each species.  相似文献   

10.
In this synthesis we apply coevolutionary models to the interactions between socially parasitic ants and their hosts. Obligate social parasite systems are ideal models for coevolution, because the close phylogenetic relationship between these parasites and their hosts results in similar evolutionary potentials, thus making mutual adaptations in a stepwise fashion especially likely to occur. The evolutionary dynamics of host-parasite interactions are influenced by a number of parameters, for example the parasite's transmission mode and rate, the genetic structure of host and parasite populations, the antagonists' migration rates, and the degree of mutual specialisation. For the three types of obligate ant social parasites, queen-tolerant and queen-intolerant inquilines and slavemakers, several of these parameters, and thus the evolutionary trajectory, are likely to differ. Because of the fundamental differences in lifestyle between these social parasite systems, coevolution should further select for different traits in the parasites and their hosts. Queen-tolerant inquilines are true parasites that exert a low selection pressure on their host, because of their rarity and the fact that they do not conduct slave raids to replenish their labour force. Due to their high degree of specialisation and the potential for vertical transmission, coevolutionary theory would predict interactions between these workerless parasites and their hosts to become even more benign over time. Queen-intolerant inquilines that kill the host queen during colony take-over are best described as parasitoids, and their reproductive success is limited by the existing worker force of the invaded host nest. These parasites should therefore evolve strategies to best exploit this fixed resource. Slavemaking ants, by contrast, act as parasites only during colony foundation, while their frequent slave raids follow a predator prey dynamic. They often exploit a number of host species at a given site, and theory predicts that their associations are best described in terms of a highly antagonistic coevolutionary arms race.  相似文献   

11.
Predators often have type II functional responses and live in environments where their life history traits as well as those of their prey vary from patch to patch. To understand how spatial heterogeneity and predator handling times influence the coevolution of patch preferences and ecological stability, we perform an ecological and evolutionary analysis of a Nicholson-Bailey type model. We prove that coevolutionarily stable prey and searching predators prefer patches that in isolation support higher prey and searching predator densities, respectively. Using this fact, we determine how environmental variation and predator handling times influence the spatial patterns of patch preferences, population abundances and per-capita predation rates. In particular, long predator handling times are shown to result in the coevolution of predator and prey aggregation. An analytic expression characterizing ecological stability of the coevolved populations is derived. This expression implies that contrary to traditional theoretical expectations, predator handling time can stabilize predator-prey interactions through its coevolutionary influence on patch preferences. These results are shown to have important implications for classical biological control.  相似文献   

12.
The outcome of species interactions is often strongly influenced by variation in the functional traits of the individuals participating. A rather large body of work demonstrates that inducible morphological plasticity in predators and prey can both influence and be influenced by species interaction strength, with important consequences for individual fitness. Much of the past research in this area has focused on the ecological and evolutionary significance of trait plasticity by studying single predator–prey pairs and testing the performance of individuals having induced and noninduced phenotypes. This research has thus been critical in improving our understanding of the adaptive value of trait plasticity and its widespread occurrence across species and community types. More recently, researchers have expanded this foundation by examining how the complexity of organismal design and community-level properties can shape plasticity in functional traits. In addition, researchers have begun to merge evolutionary and ecological perspectives by linking trait plasticity to community dynamics, with particular attention on trait-mediated indirect interactions. Here, we review recent studies on inducible morphological plasticity in predators and their prey with an emphasis on internal and external constraints and how the nature of predator–prey interactions influences the expression of inducible phenotypes. In particular, we focus on multiple-trait plasticity, flexibility and modification of inducible plasticity, and reciprocal plasticity between predator and prey. Based on our arguments on these issues, we propose future research directions that should better integrate evolutionary and population studies and thus improve our understanding of the role of phenotypic plasticity in predator–prey population and community dynamics.  相似文献   

13.
This paper considers the evolution of phenotypic traits in a community comprising the populations of predators and prey subject to Allee effect. The evolutionary model is constructed from a deterministic approximation of the stochastic process of mutation and selection. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy and evolutionary branching. We find that the strong Allee effect of prey facilitates the formation of continuously stable strategy in the case that prey population undergoes evolutionary branching if the Allee effect of prey is not strong enough. Secondly, we show that evolutionary suicide is impossible for prey population when the intraspecific competition of prey is symmetric about the origin. However, evolutionary suicide can occur deterministically on prey population if prey individuals undergo strong asymmetric competition and are subject to Allee effect. Thirdly, we show that the evolutionary model with symmetric interactions admits a stable limit cycle if the Allee effect of prey is weak. Evolutionary cycle is a likely outcome of the process, which depends on the strength of Allee effect and the mutation rates of predators and prey.  相似文献   

14.
Chemical signals released by predators or injured prey often induce shifts in the traits of prey species, which may in turn affect species interactions. Here we investigate the role that chemical cues play in mediating species interactions in the littoral food web of lakes. Previous studies have shown that predators induce shifts in the morphology, life history, and behavior of the freshwater snail Physella, but the ecological consequences of developing these inducible defenses are not well documented. We observed habitat use of the freshwater snail Physella gyrina along a depth gradient in a natural lake, and found they increased their use of covered habitats with increasing depth. We hypothesized that this habitat shift was due to changes in the level and type of predation risk, and that the habitat shift would affect periphyton standing crops. These hypotheses were tested in a mesocosm experiment in which we manipulated the presence of molluscivorous fish and crayfish. Predators were confined to cages and snail density was identical in all treatments, so any effects of predators were mediated through trait shifts induced by chemical cues. In the presence of fish, Physella moved under cover, but in the presence of crayfish, Physella avoided cover and moved to the water surface. These non‐lethal effects of predators on snail habitat use influenced the interaction between snails and their periphyton resources. In the presence of fish, periphyton standing crop in covered habitats was reduced to just 8% of periphyton in the absence of fish. Crayfish had no significant effect on periphyton in covered habitats, but they reduced periphyton in near‐surface habitats to 39% of the standing crop in the absence of crayfish. The combined effects of fish and crayfish were generally intermediate to their individual effects. We conclude that because chemical cues often have strong effects on individual traits and trophic interactions are sensitive to trait values, chemical cues may play an important role in shaping the structure and dynamics of food webs.  相似文献   

15.
To investigate how complex food-webs can develop through repeated evolutionary diversification, a predator–prey model was analyzed. In the model, each individual has two traits: trait x as a predator and trait y as a prey. These traits constitute a two-dimensional phenotype space, in which the whole group of individuals are represented as a phenotype distribution. Predator–prey interactions among the phenotypes are determined by their relative positions in the phenotype space. Each phenotypic cluster was treated as a species. Each species evolves in y to escape from predation, while it evolves in x to chase their prey. Analytical investigation provided two predictions. First, coupled evolutionary diversifications of y and x may occur when the x of predators have caught up with their prey’s y, which may be repeated. Second, complex food-webs may develop when species’ competitive strengths are kept similar within the communities. If the functional response is close to the ratio-dependent response, the competitive strengths of all species are similar when the relationship between predators and prey corresponds to the ideal free distribution (IFD). These predictions were confirmed by numerical simulations. Electronic supplementary material  The online version of this article doi:() contains supplementary material, which is available to authorized users.  相似文献   

16.
Understanding how reciprocal selection shapes interacting species in Darwin's coevolutionary race is a captivating pursuit in evolutionary ecology. Coevolving traits can potentially display following three patterns: (1) geographical variation in matched traits, (2) bias in trait matching, and (3) bimodal distribution of a trait in certain populations. Based on the framework of adaptive dynamics, we present an evolutionary model for a coevolving pollination system involving the long‐proboscid fly (Moegistorhynchus longirostris) and the long‐tubed iris (Lapeirousia anceps). The model successfully demonstrates that Darwin's hypothesis can lead to all three patterns if costs are involved. Geographical variation in matched traits could be driven by geographical variation in environmental factors that affect the cost rate of trait escalation. Unequal benefits derived from the interaction by the fly and the flower could potentially cause the bias in trait matching of the system. Different cost rates to trait elongation incurred by the two species and weak assortative interactions in the coevolutionary race can drive divergent selection (i.e., an evolutionary branching) that leads to the bimodal distribution of traits. Overall, the model highlights the importance of assortative interactions and the balance of costs incurred by coevolving species as factors determining the eventual phenotypic outcome of coevolutionary interactions.  相似文献   

17.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   

18.
Summary Antipredator strategies employed by prey may be specific (effective against only one type of predator) or non-specific (effective against all predators). To examine the effects of the specificity of antipredator behaviour on biodiversity and community complexity, we analyse mathematical models including both evolutionary and population dynamics of a system including multiple prey species and multiple predator species. The models assume that all predator species change in their prey choice and all prey species have evolutionary change in their antipredator effort in evolution. The traits of each species change in an adaptive manner, whose rate is proportional to the slope of their fitness function. We calculate community complexity, resource-overlap between predators, an index of biodiversity and other properties of the coevolutionarily stable community for two cases: (1) all prey species have non-specific antipredator behaviour and (2) all prey species have predator-specific defence. Predator-specificity in defence increases community complexity, resource-overlap between predators, the total abundance of predators and the ratio of predator to prey abundance. Specific defence also decreases the number of isolated subwebs within the entire foodweb.  相似文献   

19.
Rudolf VH  Armstrong J 《Oecologia》2008,157(4):675-686
Many organisms undergo ontogenetic niche shifts due to considerable changes in size during their development. These ontogenetic shifts can alter the trophic position of individuals, the type and strength of ecological interactions across species, and allow for cannibalism within species. In this study we ask if and how the interaction of a size refuge and cannibalism in the prey alters the dynamics of intraguild predation (IGP) systems. By manipulating the composition of large cannibalistic (Aeshna umbrosa) and predatory (Anax junius) dragonfly larvae in mesocosms we show that the interaction of cannibals and predators was non-linear and increased the survival of prey. The structure of the final resource community shared by prey and predator differed between small and large dragonfly treatments but not within size classes across species. In general, the small prey stage showed similar shifts in microhabitat use and refuge use when exposed to either conspecific cannibals or predators, while large cannibals showed no clear anti-predator response. However, further behavioral experiments revealed that specific behavioral components, such as distances between individuals or number of movements, differed when individuals were exposed to either cannibals or predators. This indicates that individuals discriminated between conspecific or heterospecific predators. Furthermore, in similar experiments large cannibals and predators showed different behaviors when exposed to conspecifics rather than to each other. These changes in behavior are consistent with the observed increase in prey survival. In general, the results indicate that cannibalism and ontogenetic niche shifts can result in behavior-mediated indirect interactions that reduce the impact of the predator on the mortality of its prey and alter the interactions of IGP systems. However, they also indicate that size is not the sole determinant and that we also need to account for the species identity when predicting the dynamics of communities.  相似文献   

20.
Although recent evidence indicates that coevolutionary interactions between species often vary on a biogeographical scale, little consideration has been given to the processes responsible for producing this pattern. One potential explanation is that changes in the community composition alter the coevolutionary interactions between species, but little evidence exists regarding the occurrence of such changes. Here we present evidence that the pattern of natural selection on plant defence traits, and the probable response to that selection, are critically dependent on the composition of the biotic community. The evolutionary trajectory of defence traits against mammalian herbivory in the Ivyleaf morning glory (Ipomoea hederacea), and which defence traits are likely to respond to selection, are both dependent on the presence or absence of insect herbivores. These results indicate that variation in community composition may be a driving force in generating geographical mosaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号