首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure ofHalobacterium halobium R1M1 flagella is investigated by the methods of scanning microcalorimetry, circular dichroism, and electron microscopy. It is shown that melting curves of flagella in solutions with a different concentration of NaCl display only one peak of heat capacity that corresponds to one cooperatively melting domain. It is found that flagella do not dissociate after melting. The possible structural organization of archaebacterial flagella is discussed.  相似文献   

2.
Gametes of opposite mating type (mt + and mt -) of the green alga Chlamydomonas eugametos agglutinate via their flagella as a prelude to sexual fusion. To quantitate sexual agglutination, an in vitro assay has been developed using 35S-labeled flagella and the isolated mt -agglutination factor. It is shown that not only isolated flagella, but also the mt -agglutination factor rapidly bind to the flagella of intact gametes of the opposite mating type. This confirms the role of the mt -agglutination factor in determining the sexual agglutinability of mt -gametes. As a function of binding, the agglutinative power of the flagella of both mating types is destroyed by a temperature-sensitive process. Likewise, the mt -agglutination factor can be completely inactivated.Abbreviations Mt +/- mating type plus or minus - PAS periodic-acid Schiff-reagent - Hepes 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid - HMC buffer Hepes buffer (10 mM. pH 7.2, containing 1 mM MgCl2 and 1 mM CaCl2)  相似文献   

3.
An alteration of the form and ultrastructure of the tips of the flagella of Chlamydomonas eugametos, occurring during sexual agglutination, is shown to be persistent in the mt - flagella of the resulting vis-à-vis pairs. It is argued that this phenomenon is related to the lack of motility of mt - flagella in vis-à-vis pairs of this species.  相似文献   

4.
M. Cope  A. R. Hardham 《Protoplasma》1994,180(3-4):158-168
Summary Cryomicrotomy and immunofluorescence microscopy employing three different categories of monoclonal antibody (MAb) that label antigens on the surface of one or both flagella ofPhytophthora dnnamomi have been used to follow the synthesis and assembly of flagellar surface components. MAb Zf 1 binds to the surface of both the anterior tinsel and posterior whiplash flagella, as well as to a nuclear component. The labeling of the flagella is punctate in nature, is brighter at the flagellar base, and does not always extend to the distal tip of the flagella. MAbs in the Zt group recognise an antigen that is located along the sides of the tinsel flagellum and may be associated with the base of the mastigonemes. Immunodot-blot analysis has shown that binding of Zt MAbs is abolished by pretreatment with either pronase or periodate oxidation indicating that the antigen is a glycoprotein. MAbs in the Zg group bind to the mastigonemes on the tinsel flagellum and to packets of mastigonemes in the cytoplasm of zoospores. Zt and Zg antigens increase in abundance during zoosporogenesis and are present throughout the life cycle of the fungus, whereas the non-nuclear localisation of the Zf antigen appears only during sporulation. Prior to association with the flagellar surface, all three components become clustered in the groove region of zoospores. They do not become associated with the flagellar surface until at least 15 min after the flagellar axoneme has formed.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMF dimethylformamide - lgG1 immunoglobulin G1 - MAbs monoclonal antibodies - NIM non-immune mouse antibodies - PBS phosphate-buffered saline - PBST phosphate-buffered saline with 0.5% Tween 20 - PIPES 1,4-piperazinediethanesulfonic acid - PPD paraphenylenediamine dihydrochloride - RT room temperature - TBS tris-buffered saline - TEST tris-buffered saline with 0.05% Tween 20  相似文献   

5.
A new study of sexual agglutination between Chlamydomonas eugametos gametes and between vis-à-vis pairs has been made using techniques that allow one to distinguish between the flagella or cell bodies of individual mating types (mt+ or mt-). It is shown that before mt+ and mt- gametes fuse in pairs, their flagella, which adhere over their whole length, are maintained in a particular conformation around the mt- cell body. In clumps of agglutinating gametes the cells are asymmetrically distributed with the mt+ gametes constituting the outer surface of the clumps with the mt- gametes on the inside. The flagella are then all directed towards the middle of the clump. This orientation of the flagella is maintained for approx. 8 min after cell fusion before the vis-à-vis pair becomes motile. At this stage, all the flagellar tips are activated. The original mt+ flagellar tips then deactivate and swimming is resumed. The original mt- flagella remain immotile and activated after cell fusion and eventually shorten by a third, but only 30 min or more after fusion. Motile vis-à-vis pairs eventually settle to the substrate when the gamete bodies fuse completely to form a zygote. Settling vis-à-vis pairs are attracted to those that have already settled, to glutaraldehyde-fixed pairs and to flagella isolated from mt- gametes. They are not chemotactically attracted, rather they are weakly agglutinated. Living vis-à-vis pairs can be shown to aggregate in rows with the cell bodies lying side by side. It is argued that the flagellar agglutination sites involved in gamete recognition are also involved in vis-à-vis pair aggregationAbbreviations mt+/- mating type plus or minus - FTA flagellar tip activation  相似文献   

6.
Effect of temperature on the in vitro assembly of bacterial flagella   总被引:3,自引:0,他引:3  
The temperature dependence for the rate of reconstitution or polymerization (k+) at neutral pH of the protein, flagellin, to flagella was measured using Ostwald-type viscometers. Similarly, the kinetics for the reverse process, the thermally-induced depolymerization of flagella filaments to the flagellin monomer (k?) was measured. The temperature at which k? equals zero was used to define the thermal dissociation temperature or melting point of flagella filaments. The remarkable similarity of melting points obtained (36.8 ± 0.2 deg. C) for flagella isolated from three Salmonella strains (SJ670, SJ25 and SJ30 bearing H-antigen types i, 1.2 and e, n, x, respectively) suggests that the structural stability of these different protein filaments is also similar.On increasing the temperature between 12 and 28°C, k+ increased smoothly and had a Q10 of 1.8. Above 28.0, k+ decreased rapidly and fell to zero at a temperature near 37°C, its precise value varying with the bacterial strain. This result supports the prior hypothesis (Gerber &; Noguchi, 1967) that on heating, a reversible co-operative transconformation occurs between different states of the protein; in one state, flagellin (M) can polymerize to flagella, whereas its conformational isomer(s) may do so with difficulty or not at all.For strains SJ25 and SJ30 the rates of polymerization and depolymerization both fall to zero near 37°C. Therefore, mixtures of monomer and flagella fragments (short polymers or “seeds”), in all ratios, appear to be in equilibrium at temperatures near this critical temperature, and neither polymerization of flagellin to flagella nor melting of polymers is apparent.Measurements made on flagella from strain SJ670 showed that k+ and k? approached zero at 45 and 37°C, respectively. Within this temperature range the conc entration of monomer in equilibrium with filaments was determined. By a null -point type experiment, solutions of monomer and seed were mixed to find the ratio that showed neither increases (polymerization) nor decreases (depolyme rization) in viscosity with time. An unexpected finding was that the temperature defines a critical monomer concentration, which exists in equilibrium with any concentration of filaments (and not the ratio of monomer-to-filament concentrations). Thus, the polymerization of fiagellin to flagella corresponds to a phase change akin to either crystallization or condensation.Application, of the Clapeyron-Clausius equation to the results obtained yields a heat of condensation of 70 kcal/mol of monomeric protein. The enthalpy change associated with M ? Mi is estimated as 110 kcal/mol of protein. Since the heat content of these various forms of flagella protein lies in the order Mi > F > M, by difference we estimate the enthalpy change for the conversion of monomers to polymers to be 40 kcal/mol of monomer.  相似文献   

7.
The pigments associated with the flagellum of the phytoflagellateEuglena gracllis were characterized by HPLC. The pigment pattern of the wild-type strain was compared with a set of white mutants which did not display phototaxis and photoaccumulation in response to blue light. Flagella of the wild type contained FMN and FAD. Two mutants which lacked the stigma but retained a small paraxonemal body (PAB) contained less flavins. The whiteEuglena mutant FB, which retained a residual stigma and also a PAB, and the white phytoflagellateAstasia longa, a close relative ofEuglena, had normal amounts of flagellar flavins. Cells and flagella ofEuglena wild type contained an unldentified pterin-like pigment, called Pt16, which was substantially reduced inAstasia and theEuglena mutants. A third pigment, designated P528 with major absorption at 528 nm and fluorescence emission at 550 nm was present mainly in flagella. The association of the three pigment types with flagella and their respective alterations in the white strains indicates their possible role in photoreception. Dedicated to Pill-Soon Song on the occasion of his 60th birthday.  相似文献   

8.
Vibrio parahaemolyticus, the flagellated nonswarming marine bacteria were induced to swarm on solid media under three different conditions: growth at 20–26°C on medium containing 1% NaCl, growth on a medium in a sealed Petridish and growth on H2O2-treated medium. The morphological transformations observed in cells during swarming of V. parahaemolyticus are similar to those found jor the naturally swarming Vibrio alginolyticus. The mechanism of swarming in both species involves massive formation of peritrichous flagella and a negative chemotactive response to metabolic byproducts.  相似文献   

9.
The single subpolar flagellum of Rhodobacter sphaeroides shows an enlarged hook-filament junction. One of the two proteins that compose this section of the filament is HAP1 Rs (FlgK Rs ) it contains a central non-conserved region of 860 amino acids that makes this protein about three times larger than its homologue in Salmonella enterica serovar Typhimurium. We investigated the role of this central portion of the unusually large HAP1 protein of R. sphaeroides by monitoring the effects of serial deletions in flgK Rs , the gene encoding HAP1 Rs , on swimming and swarming. Two deletion mutants did not assemble functional flagella, two were paralyzed and five exhibited reduced free-swimming speeds. Some mutants produced unusual swarming patterns on soft agar without or with Ficoll 400. A segment of approximately 200-aa of the central region of HAP1 Rs that aligns with the variable region of the flagellin sequence from other γ- and β-proteobacteria was also found. Therefore, it is possible that the origin of this large central domain of HAP1 Rs could be associated with an event of horizontal transfer and subsequent duplications and/or insertions.  相似文献   

10.
Cyanoptyche gloeocystis f.dispersa (Geitler)Starmach is a palmelloid colonial alga that contains prokaryotic blue-green endocytobionts (cyanelles) instead of chloroplasts. The periphery of the host cell shows a peculiar lacunae system with underlying microtubules. Vegetative cells possess two rudimentary flagella. Zoospores are dorsiventrally shaped with two heterokont and heterodynamic flagella which originate from a subapical depression. This depression can also be seen in vegetative cells. Both flagella possess non-tubular mastigonemes. Main reserve product is starch lying freely in the cytoplasm. Cyanelles, enclosed singly in a host vesicle, are provided with a remnant cell wall. Thylakoids are arranged concentrically. The central part of each cyanelle harbours its DNA and one large polyhedral body, probably a carboxysome.Cyanoptyche gloeocystis f.dispersa shares all taxonomically essential characters with the monadoidCyanophora, the palmelloidGloeochaete, and the coccoidGlaucocystis. All of them are members of the cyanelle-bearing small algal classGlaucocystophyceae. Members of this class serve as model organisms for the evolution of chloroplasts from cyanophycean ancestors.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

11.
The active principle in a methanolic extract of the laboratory-grown cyanobacterium, Fischerella sp. isolated from Neem (Azadirachta indica) tree bark was active against Mycobacterium tuberculosis, Enterobacter aerogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli as well as three multi-drug resistant E. coli strains in in vitro assays. Based on MS, UV, IR 1H NMR analyses the active principle is proposed to be hapalindole T having the empirical formula C21H23N2ClSO and a molecular weight of 386 with the melting point range 179–182 °C. The estimated production of Hapalindole T from the cyanobacterium is 1.25 mg g−1 lyophilized biomass. It is suggested that cyanobacteria colonizing specialized niches such as tree bark could be an antibacterial drug resource.  相似文献   

12.
T. Hori  Ø. Moestrup 《Protoplasma》1987,138(2-3):137-148
Summary While green algae usually lack one of the outer dynein arms in the axoneme, flagella of the octoflagellated prasinophytePyramimonas octopus possess dynein arms on all peripheral doublets. The outer dynein arm on doublet no. 1 is modified, and additional structures are associated with doublets no. 2 and 6. The flagellar scales are asymmetrically arranged. Thus the two rows of thick flagellar hairscales are displaced towards doublet no. 6,i.e., in the direction of the effective stroke of each flagellum. The underlayer of small scales includes two nearly opposite double rows scales, arranged in the longitudinal direction of the flagellum. The hairscales emerge from these rows. The double rows are separated on one side by 9, on the other by 11 rows of helically arranged scales. The central pair of microtubules twists, but the axoneme itself (represented by the 9 peripheral doublets), does not seem to rotate. The flagella are arranged in two groups, showing modified 180° rotational symmetry. The effective strokes of the two central flagella are exactly opposite, while the other flagella beat in six intermediate directions.  相似文献   

13.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

14.
R. A. Bloodgood 《Protoplasma》1991,164(1-3):12-22
Summary Ciliary and flagellar membranes are dynamic. Ciliary and flagellar membranes have diverged widely during evolution and perform many specialized functions. Transmembrane signaling is an important component of the function of ciliary and flagellar surfaces in general. In this review, I discuss some of the functions performed by ciliary and flagellar surfaces and I present three different ciliary and flagellar signaling systems associated with rather different dynamic events performed by ciliary and flagellar surfaces. Two of these are associated withChlamydomonas flagella and one is associated with vertebrate olfactory cilia. Calcium regulation of protein phosphorylation appears to be important in regulating glycoprotein movements in theChlamydomonas flagellar membrane. Changes in levels of cAMP and cAMP-dependent protein phosphorylation are clearly central to the signaling associated with mating events in gametic flagella ofChlamydomonas, although calcium clearly has an important, if poorly understood, role to play. There is no known role for G proteins in flagellar membrane events inChlamydomonas. In contrast, mammalian olfactory cilia possess an odorant activated, G protein regulated adenylate cyclase and conductance channels that are directly gated by cyclic nucleotides. A second class of odorants that do not affect adenylate cyclase activity appear to act through G protein activated phospholipase C and changes in IP3 second messenger levels. These examples demonstrate the diversity in the signaling pathways associated with ciliary and flagellar membranes.Abbreviations CaPK-2 calcium-dependent protein kinase - db-cAMP dibutyryl cAMP - Fab fragment antigen binding - IgE immunoglobulin E - IP3 myo-inositol trisphosphate - IP4 myo-inositol tetrakisphosphate - OBP odorant binding protein - PIP2 phosphoinositol bisphosphate - TFP trifluoperazine - WGA wheat germ agglutinin  相似文献   

15.
R. A. Bloodgood 《Protoplasma》1981,106(3-4):183-192
Summary Flagella are generally recognized as organelles of motility responsible for the ability ofChlamydomonas to swim through its environment. However, the same flagella are also responsible for an alternative form of whole cell locomotion, termed gliding. Use of paralyzed flagella mutants demonstrates that gliding is independent of axonemal bend propagation. Gliding motility results from an interaction of the flagellar surface with a solid substrate. Gliding is characterized by bidirectional movements at 1.6±0.3 m/second and occurs when the cell is in a characteristic gliding configuration, where the two flagella are oriented at 180° to one another. A variety of observations suggest that the leading flagellum is responsible for the force transduction resulting in cell locomotion, although both flagella have the capacity to function as the active flagellum. The characteristics of gliding motility have been compared with theChlamydomonas flagellar surface motility phenomenon defined as surface translocation of polystyrene microspheres.  相似文献   

16.
A bacterium which has phospholipase A1 activity was isolated from soil. It is aerobic, motile, oxidase-negative and has flagella. The G+C content of the DNA was 58.1 mol%. The major isoprenoids of cell was were Q-8 and MK-8. The main cellular fatty acids were saturated straight chain (n-16) and cyclic (17:) fatty acids. Based on its morphological, physiological and chemotaxonomic characteristics, this organism was placed in the genusSerratia. Nutritional factors affecting enzyme production were explored. Xylose and ammonium sulfate were the best carbon and nitrogen sources, respectively. Ferrous ions exerted a considerable positive effect on enzyme production. The optimal pH and temperature for phospholipase A1 production were 7.0 and 30°C, respectively.  相似文献   

17.
Arginine deiminase (ADI), an arginine degrading enzyme, has been studied as a potential anti-cancer agent for arginine-auxotrophic tumors, such as melanomas and hepatocellular carcinomas (HCCs). In this study, a strain SWP1 producing high activity of ADI was isolated from the Wuxi canal. Based on its morphological, biochemical characteristics and 16S rRNA gene sequence analysis, SWP1 was identified as Pseudomonas plecoglossicida and is now deposited at CGMCC (China General Microbiological Culture Collection Center) as P. plecoglossicida CGMCC2039. It is gram-negative, aerobe, rod-shaped, motile by one or several polar flagella. In vitro studies showed that HCC cell line HEPG2 was sensitive to ADI isolated from P. plecoglossicida CGMCC2039. Our study suggests that ADI from P. plecoglossicida CGMCC2039 could become a novel anti-tumor drug.  相似文献   

18.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

19.
The new parasitic algaChlorosphaeropsis epidemica is a member of theChlorosarcinales and lives endophytically in the leaf-tissue ofPotamogeton species. It forms stacks of cells and appears in great numbers, especially in dying leaf-blades. Sexual reproduction is described for the first time in this genus. Apart from its endophytic way of life,Chl. epidemica is characterized by mononuclear cells with a parietal chloroplast of irregular thickness and with a few perforations, sometimes of complicated reticulate shape, and with 1–5 pyrenoids. The usually sphaerical gametes (respectively zoospores) are provided with two equal flagella, a parietal plastid, one pyrenoid and one stigma. In connection with the asexual reproduction the terms vegetative division and desmoschisis are critically discussed.
  相似文献   

20.
The flagellar motor switch complex protein FliG plays an essential role in flagella biosynthesis and motility. In most motile bacteria, only one fliG homologue is present in the genome. However, several spirochete species have two putative fliG genes (referred to as fliG1 and fliG2) and their roles in flagella assembly and motility remain unknown. In this report, the Lyme disease spirochete Borrelia burgdorferi was used as a genetic model to investigate the roles of these two fliG homologues. It was found that fliG2 encodes a typical motor switch complex protein that is required for the flagellation and motility of B. burgdorferi. In contrast, the function of fliG1 is quite unique. Disruption of fliG1 did not affect flagellation and the mutant was still motile but failed to translate in highly viscous media. GFP‐fusion and motion tracking analyses revealed that FliG1 asymmetrically locates at one end of cells and the loss of fliG1 somehow impacted one bundle of flagella rotation. In addition, animal studies demonstrated that the fliG1? mutant was quickly cleared after inoculation into the murine host, which highlights the importance of the ability to swim in highly viscous media in the infectivity of B. burgdorferi and probably other pathogenic spirochetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号