首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli protein export involves cytosolic components termed molecular chaperones which function to stabilize precursors for membrane translocation. It has been suggested that chaperones maintain precursor proteins in a loosely folded state. We now demonstrate that purified proOmpA in its translocation component conformation contains both secondary and tertiary structure as analyzed by circular dichroism and intrinsic tryptophan fluorescence. Association with one molecular chaperone, SecB, subtly modulates the conformation of proOmpA and stabilizes it by inhibiting aggregation, permitting its translocation across inverted E.coli inner membrane vesicles. These results suggest that translocation competence does not simply result from the maintenance of an unfolded state and that molecular chaperones can stabilize precursor proteins by inhibiting their oligomerization.  相似文献   

2.
3.
Soluble factors participate in protein translocation across a variety of biological membranes. TheEscherichia coli soluble protein SecB (the product of thesecB gene) is involved in the export of periplasmic and outer membrane proteins. The isolation ofsecB mutations permitted the demonstration that SecB is required for rapid and efficient export of certain proteins. Consistent with the results of these genetic studies, purified SecB has been shown to stimulate protein translocation acrossE. coli inner membrane vesiclesin vitro. This article presents a review of these past studies of SecB, speculation on the role of SecB in protein translocation, and a comparison of SecB and other factors, trigger factor and GroEL.  相似文献   

4.
Export of protein into the periplasm of Escherichia coli via the general secretory system requires that the transported polypeptides be devoid of stably folded tertiary structure. Capture of the precursor polypeptides before they fold is achieved by the promiscuous binding to the chaperone SecB. SecB delivers its ligand to export sites through its specific binding to SecA, a peripheral component of the membrane translocon. At the translocon the ligand is passed from SecB to SecA and subsequently through the SecYEG channel. We have previously used site-directed spin labeling and electron paramagnetic resonance spectroscopy to establish a docking model between SecB and SecA. Here we report use of the same strategy to map the pathway of a physiologic ligand, the unfolded form of precursor galactose-binding protein, on SecB. Our set of SecB variants each containing a single cysteine, which was used in the previous study, has been expanded to 48 residues, which cover 49% of the surface of SecB. The residues on SecB involved in contacts were identified as those that, upon addition of the unfolded polypeptide ligand, showed changes in spectral line shape consistent with restricted motion of the nitroxide. We conclude that the bound precursor makes contact with a large portion of the surface of the small chaperone. The sites on SecB that interact with the ligand are compared with the previously identified sites that interact with SecA and a model for transfer of the ligand is discussed.  相似文献   

5.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

6.
The thermodynamics of binding of unfolded polypeptides to the chaperone SecB was investigated in vitro by isothermal titration calorimetry and fluorescence spectroscopy. The substrates were reduced and carboxamidomethylated forms of RNase A, BPTI, and alpha-lactalbumin. SecB binds both fully unfolded RNase A and BPTI as well as compact, partially folded disulfide intermediates of alpha-lactalbumin, which have 40-60% of native secondary structure. The heat capacity changes observed on binding the reduced and carboxamidomethylated forms of alpha-lactalbumin, BPTI, and RNase A were found to be -0.10, -0.29, and -0.41 kcal mol(-1) K(-1), respectively, and suggest that between 7 and 29 residues are buried upon substrate binding to SecB. In all cases, binding occurs with a stoichiometry of one polypeptide chain per monomer of SecB. There is no evidence for two separate types of binding sites for positively charged and hydrophobic ligands. Spectroscopic and proteolysis protection studies of the binding of SecB to poly-L-Lys show that binding of highly positively charged peptide ligands to negatively charged SecB leads to charge neutralization and subsequent aggregation of SecB. The data are consistent with a model where SecB binds substrate molecules at an exposed hydrophobic cleft. SecB aggregation in the absence of substrate is prevented by electrostatic repulsion between negatively charged SecB tetramers.  相似文献   

7.
S J Landry  L M Gierasch 《Biochemistry》1991,30(30):7359-7362
Chaperones facilitate folding and assembly of nascent polypeptides in vivo and prevent aggregation in refolding assays in vitro. A given chaperone acts on a number of different proteins. Thus, chaperones must recognize features present in incompletely folded polypeptide chains and not strictly dependent on primary structural information. We have used transferred nuclear Overhauser effects to demonstrate that the Escherichia coli chaperonin GroEL binds to a peptide corresponding to the N-terminal alpha-helix in rhodanese, a mitochondrial protein whose in vitro refolding is facilitated by addition of GroEL, GroES, and ATP. Furthermore, the peptide, which is unstructured when free in aqueous solution, adopts an alpha-helical conformation upon binding to GroEL. Modification of the peptide to reduce its intrinsic propensity to take up alpha-helical structure lowered its affinity for GroEL, but, nonetheless, it could be bound and took up a helical conformation when bound. We propose that GroEL interacts with sequences in an incompletely folded chain that have the potential to adopt an amphipathic alpha-helix and that the chaperonin binding site promotes formation of a helix.  相似文献   

8.
Molecular chaperones prevent protein aggregation in vivo and in vitro. In a few cases, multichaperone systems are capable of dissociating aggregated state(s) of substrate proteins, although little is known of the mechanism of the process. SecB is a cytosolic chaperone, which forms part of the precursor protein translocation machinery in Escherichia coli. We have investigated the interaction of the B-chain of insulin with chaperone SecB by light scattering, pyrene excimer fluorescence, and electron spin resonance spectroscopy. We show that SecB prevents aggregation of the B-chain of insulin. We show that SecB is capable of dissociating soluble B-chain aggregates as monitored by pyrene fluorescence spectroscopy. The kinetics of dissociation of the B-chain aggregate by SecB has been investigated to understand the mechanism of dissociation. The data suggests that SecB does not act as a catalyst in dissociation of the aggregate to individual B-chains, rather it binds the small population of free B-chains with high affinity, thereby shifting the equilibrium from the ensemble of the aggregate toward the individual B-chains. Thus SecB can rescue aggregated, partially folded/misfolded states of target proteins by a thermodynamic coupling mechanism when the free energy of binding to SecB is greater than the stability of the aggregate. Pyrene excimer fluorescence and ESR methods have been used to gain insights on the bound state conformation of the B-chain to chaperone SecB. The data suggests that the B-chain is bound to SecB in a flexible extended state in a hydrophobic cleft on SecB and that the binding site accommodates approximately 10 residues of substrate.  相似文献   

9.
SecA is the ATPase that acts as the motor for protein export in the general secretory, or Sec, system of Escherichia coli. The tetrameric cytoplasmic chaperone SecB binds to precursors of exported proteins before they can become stably folded and delivers them to SecA. During this delivery step, SecB binds to SecA. The complex between SecA and SecB that is maximally active in translocation contains two protomers of SecA bound to a tetramer of SecB. The aminoacyl residues on each protein that are involved in binding the other have previously been identified by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy; however, that study provided no information concerning the relative orientation of the proteins within the complex. Here we used our extensive collection of single-cysteine variants of the two proteins and subjected pairwise combinations of SecA and SecB to brief oxidation to identify residues in close proximity. These data were used to generate a model for the orientation of the two proteins within the complex.  相似文献   

10.
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein.  相似文献   

11.
分子伴侣过量表达对蛋白质分泌及可溶性的影响   总被引:11,自引:3,他引:8  
 通过过量表达大肠杆菌分子伴侣 Sec B和 Gro EL,研究了它们对靶蛋白的分泌及可溶性的影响 .在过量表达 Sec B的宿主菌中 ,周质空间分泌蛋白总量较对照组提高了约 71 % ,GL- 7- ACA酰化酶在周质空间酶的活力较对照组提高了约 1 .5倍 ,碱性磷酸酯酶在周质空间酶的活力较对照组提高了约 54% ;在过量表达 Gro EL的宿主菌中 ,周质分泌蛋白总量较对照组提高了约 52 % ,青霉素 G酰化酶在周质空间酶的活力较对照组提高了约 76% ,鲑鱼降钙素六聚体的可溶性组分的比例由原来的 45%增加到约 90 % ,而 MS2 -人白介素 - 3融合蛋白的包涵体有约 1 5%转变为可溶性组份 .上述结果表明 ,分子伴侣 Sec B和 Gro EL的过量表达促进了靶蛋白的分泌 ,Gro EL增加了靶蛋白的可溶性  相似文献   

12.
The isolated apical domain of GroEL consisting of residues 191–345 (known as “minichaperone”) binds and assists the folding of a wide variety of client proteins without GroES and ATP, but the mechanism of its action is still unknown. In order to probe into the matter, we have examined minichaperone-mediated folding of a large aggregation prone protein Maltodextrin-glucosidase (MalZ). The key objective was to identify whether MalZ exists free in solution, or remains bound to, or cycling on and off the minichaperone during the refolding process. When GroES was introduced during refolding process, production of the native MalZ was inhibited. We also observed the same findings with a trap mutant of GroEL, which stably captures a predominantly non-native MalZ released from minichaperone during refolding process, but does not release it. Tryptophan and ANS fluorescence measurements indicated that refolded MalZ has the same structure as the native MalZ, but that its structure when bound to minichaperone is different. Surface plasmon resonance measurements provide an estimate for the equilibrium dissociation constant KD for the MalZ-minichaperone complex of 0.21 ± 0.04 μM, which are significantly higher than for most GroEL clients. This showed that minichaperone interacts loosely with MalZ to allow the protein to change its conformation and fold while bound during the refolding process. These observations suggest that the minichaperone works by carrying out repeated cycles of binding aggregation-prone protein MalZ in a relatively compact conformation and in a partially folded but active state, and releasing them to attempt to fold in solution.  相似文献   

13.
分子伴侣SecB基因和人淋巴毒素基因在大肠杆菌中的共表达周颖张青殷长传宋大新陈永青(复旦大学微生物学系和遗传研究所上海200433)分子伴侣(Chaperone)是细胞内催化及维持其他蛋白质正确构象的一类蛋白质分子[1,2]。研究表明,分子伴...  相似文献   

14.
SecB, a molecular chaperone involved in protein export in Escherichia coli, displays the remarkable ability to selectively bind many different polypeptide ligands whose only common feature is that of being nonnative. The selectivity is explained in part by a kinetic partitioning between the folding of a polypeptide and its association with SecB. SecB has no affinity for native, stably folded polypeptides but interacts tightly with polypeptides that are nonnative. In order to better understand the nature of the binding, we have examined the interaction of SecB with intermediates along the folding pathway of maltose-binding protein. Taking advantage of forms of maltose-binding protein that are altered in their folding properties, we show that the first intermediate in folding, represented by the collapsed state, binds to SecB, and that the polypeptide remains active as a ligand until it crosses the final energy barrier to attain the native state.  相似文献   

15.
It has been proposed that the cytoplasmic SecB protein functions as a component of the Escherichia coli protein export machinery by serving as an antifolding factor that retards folding of the precursor maltose-binding protein (preMBP) into a translocation-incompetent form. In this study, it was found that SecB directly interacts with wild-type preMBP and various mutationally altered MBP species synthesized in vitro to form a SecB-MBP complex that can be precipitated with anti-SecB serum. The association of SecB with wild-type preMBP was relatively unstable; such a complex was formed only when SecB was present cotranslationally or after denaturation of previously synthesized preMBP and was detected with only low efficiency. In marked contrast, MBP species that were defective in the ability to assume the stable conformation of wild-type preMBP or that exhibited significantly slower folding kinetics formed much more stable complexes with SecB. In one case, we demonstrated that SecB did not need to be present cotranslationally for complex formation to occur. Formation of a complex between SecB and MBP was clearly not dependent on the MBP signal peptide. However, we were unable to detect complex formation between SecB and MBP lacking virtually the entire signal peptide but having a completely intact mature moiety. This MBP species folded at a rate considerably faster than that of wild-type preMBP. The propensity of this mutant protein to assume the native conformation of mature MBP apparently precludes a stable association with SecB, whereas an MBP species lacking a signal peptide but exhibiting altered folding properties did form a complex with SecB that could be precipitated with anti-SecB serum.  相似文献   

16.
The chaperone SecB from Escherichia coli is primarily involved in passing precursor proteins into the Sec system via specific interactions with SecA. The crystal structure of SecB from E. coli has been solved to 2.35 A resolution. The structure shows flexibility in the crossover loop and the helix-connecting loop, regions that have been implicated to be part of the SecB substrate-binding site. Moreover conformational variability of Trp36 is observed as well as different loop conformations for the different monomers. Based on this, we speculate that SecB can regulate the access or extent of its hydrophobic substrate-binding site, by modulating the conformation of the crossover loop and the helix-connecting loop. The structure also clearly explains why the tetrameric equilibrium is shifted towards the dimeric state in the mutant SecBCys76Tyr. The buried cysteine residue is crucial for tight packing, and mutations are likely to disrupt the tetramer formation but not the dimer formation.  相似文献   

17.
Chaperonin GroEL from Escherichia coli consists of two heptameric rings stacked back-to-back to form a cagelike structure. It assists in the folding of substrate proteins in concert with the co-chaperonin GroES by incorporating them into its large cavity. The mechanism underlying the incorporation of substrate proteins currently remains unclear. The flexible C-terminal residues of GroEL, which are invisible in the x-ray crystal structure, have recently been suggested to play a key role in the efficient encapsulation of substrates. These C-terminal regions have also been suggested to separate the double rings of GroEL at the bottom of the cavity. To elucidate the role of the C-terminal regions of GroEL on the efficient encapsulation of substrate proteins, we herein investigated the effects of C-terminal truncation on GroE-mediated folding using the green fluorescent protein (GFP) as a substrate. We demonstrated that the yield of in-cage folding mediated by a single ring GroEL (SR1) was markedly decreased by truncation, whereas that mediated by a double ring football-shaped complex was not affected. These results suggest that the C-terminal region of GroEL functions as a barrier between rings, preventing the leakage of GFP through the bottom space of the cage. We also found that once GFP folded into its native conformation within the cavity of SR1 it never escaped even in the absence of the C-terminal tails. This suggests that GFP molecules escaped through the pore only when they adopted a denatured conformation. Therefore, the folding and escape of GFP from C-terminally truncated SR1·GroES appeared to be competing with each other.  相似文献   

18.
The structure and stability in solution of the monomeric form of GroEL were studied by the methods of circular dichroism, binding of a hydrophobic probe, limited proteolysis, modification of thiol groups, sedimentation, and size-exclusion chromatography. The monomeric GroEL at 23 degrees C was shown to be a globular protein with a pronounced secondary and a rigid tertiary structure. It exhibited no marked tendency to oligomerization in the absence of adenine nucleotides. However, the free monomeric GroEL was substantially less stable to urea and heat than the corresponding subunit in the composition of native oligomeric particles. The monomeric form also bound the hydrophobic probe, 8-anilino-1-naphthalenesulfonic acid, by an order of magnitude better than the subunit in the oligomeric particles. The ATP-induced oligomerization process of both folded and unfolded GroEL monomers was studied. The oligomerization rate was found to be the same for both monomers, and, therefore, should be limited by the ATP-dependent "arrangement" of the sites in the folded monomers responsible for the oligomerization rather than by the spontaneous refolding of monomers.  相似文献   

19.
The rate of folding of the precursor of beta-lactamase is not influenced by the presence of SecB under conditions in which GroEL/ES retards the folding. Wild-type beta-lactamase and several mutants in the signal or the mature protein, affecting either transport or enzyme kinetics and probably folding, were examined for total expression, total enzymatic activity, and transported beta-lactamase (in vivo resistance) in secB- and secB+ strains. We conclude that there is no indication of any relevant interaction between SecB and pre-beta-lactamase in vitro, nor did the secB- mutation affect the transport of wild-type beta-lactamase or any of the mutant in vivo. Thus, putative Escherichia coli "folding modulators' must be of limited specificity.  相似文献   

20.
Diverse studies of three cytoplasmic proteins of Escherichia coli--SecB, trigger factor and GroEL--have suggested that they can maintain precursor proteins in a conformation which is competent for membrane translocation. These proteins have been termed 'chaperones'. Using purified chaperone proteins and precursor protein substrates, we find that each of these chaperones can stabilize proOmpA for translocation and for the translocation-ATPase. These chaperones bind to proOmpA to form isolable complexes. SecB and GroEL will also form complexes with another exported protein, prePhoE. In contrast, these chaperones do not form stable complexes with a variety of soluble proteins such as SecA protein, bovine serum albumin, ovalbumin or ribonuclease A. While chaperones may transiently interact with soluble proteins to catalyze their folding, the stable interaction between chaperones and presecretory proteins, maintaining an open conformation which is essential for translocation, may commit these proteins to the secretion pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号