首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, relationships among three genera Acontias, Acontophiops, and Typhlosaurus, that comprise the South African limbless lizard subfamily Acontinae, were assessed with partial sequences of the 16S rRNA mitochondrial DNA gene. In addition, relationships within Acontias were further investigated using sequence data from the cytochrome oxidase I gene (COI). Maximum likelihood and maximum parsimony analyses of the 16S rRNA mtDNA data revealed that within this subfamily, Typhlosaurus is basal while Acontophiops and Acontias are sister taxa. Based on the 16S rRNA mtDNA data, the relationships within Acontias placed A. meleagris orientalis as the sister taxon of A. percivali tasmani, with A. m. orientalis lineacauda morph and A. m. meleagrus being the sister taxa to this group. The small-bodied skinks A. lineatus lineatus and A. l. tristis formed a monophyletic group, with the medium-bodied species A. gracilicauda gracilicauda being their sister taxon. Analyses of the COI gene for Acontias place A. m. orientalis as the sister taxon of A. p. tasmani with both A. meleagris meleagris and A. m. orientalis lineacauda being distinct. In contrast to the 16S rRNA mtDNA data, the COI data placed A. g. gracilicauda as the sister taxon to these medium-bodied species; while the subspecies status of the small-bodied taxa A. l. lineatus and A. l. tristis is reaffirmed. Combined analysis of both gene fragments for Acontias taxa recovered the same clades as found using only COI data. Systematic affinities in Acontias are discussed. These results indicate that Acontias is more species rich than previously thought.  相似文献   

2.
Subspecies in the limbless, endemic African fossorial skink genus Acontias constitute ill-defined operational taxonomic units, consequently considerable systematic debate has lingered on the systematic diversity within Acontias. In the present study, the systematic affinities among acontine taxa are explored with the utility of partial sequence data from two mitochondrial gene loci (16S rRNA and cytochrome oxidase subunit 1 (COI)) for all taxa, while two additional loci (12S rRNA, cytochrome b) were used to investigate relationships within the Acontias meleagris complex. Phylogenetic results, derived from the combined analysis, revealed two monophyletic clades. Clade 1 is comprised of small-bodied skinks while clade 2 comprised the medium bodied skinks. Within clade 2 none of the traditionally recognized subspecies formed reciprocally monophyletic groups. Furthermore, constraining the topology and enforcing sister taxa relationships between the assumed subspecies, consistently recovered a topology that was statistically significant worse, indicating that the traditionally designated subspecies groupings probably represent invalid taxonomic units, thus clearly reflecting considerable discord with current taxonomy. The burrowing life style of these lizards has probably led to marked convergent evolution and constrained the development of diagnostic morphological characters among these species. Morphological similarities in color as well as scale architecture within Acontias are labile and highly homoplaseous and do not reflect the evolutionary history of the group. Taxonomic implications of these results are discussed.  相似文献   

3.
Variable morphological characters have obscured genealogical relationships in the Cape fossorial skink Acontias meleagris meleagris species complex. Currently the species complex contains four dubious operational taxonomic units (A. meleagris meleagris, A. m. orientalis, A. percivali tasmani and the morph lineicauda) with poorly defined species boundaries. In the present study we examine the evolutionary relationships within the species complex by sampling 24 skink populations from the known geographical distribution in the Western and Eastern Cape provinces of South Africa, representing a total of 119 specimens. We used partial sequence data derived from two mitochondrial DNA genes, 16S rRNA and COI, and one nuclear DNA gene, intron β‐fibrinogen (β‐fibint 7), to examine evolutionary relationships. Phylogenetic relationships were determined using both Maximum Parsimony (MP) and Bayesian inference (BI) from the combined mtDNA, nDNA and the total evidence data. Additionally we employed Maximum likelihood (ML) analyses on the total evidence data that comprised ~1.5 kb. Topologies derived from the combined mtDNA analyses were congruent with the total evidence analyses (mtDNA + nDNA) and retrieved five major clades with strong statistical support inferred from bootstrapping and posterior probabilities. The five clades were genealogically and geographically exclusive, diagnostic at both the mtDNA and nDNA level and characterized by pronounced sequence divergence, with no shared haplotypes between clades. Collectively these results suggest the presence of five putative cryptic operational taxonomic units within the A. meleagris meleagris species complex. Constraining the traditionally recognized taxa always retrieved a statistically worse topology suggesting that considerable taxonomic revision is required. Our results indicate that traditional morphological characters need to be reassessed to define the five novel lineages in the A. meleagris meleagris species complex. The phylogeographic pattern for the fossorial skinks we retrieved was novel compared to phylogeographic studies for codistributed above ground living taxa. These results suggest that the abiotic and biotic factors that impact subterranean taxa may differ from supraterranean taxa.  相似文献   

4.
Skinks are the largest family of lizards and are found worldwide in a diversity of habitats. One of the larger and more poorly studied groups of skinks includes members of the subfamily Scincinae distributed in sub-Saharan Africa. Sub-Saharan African scincines are one of the many groups of lizards that show limb reduction and loss, and the genus Scelotes offers an excellent opportunity to look at limb loss in a phylogenetic context. Phylogenetic relationships were reconstructed for a total of 52 taxa representing all subfamilies of skinks as well as other Autarchoglossan families using sequence from six gene regions including; 12S, 16S, and cytochrome b (mitochondrial), as well as alpha-Enolase, 18S, and C-mos (nuclear). The family Scincidae is recovered as monophyletic and is the sister taxon to a (Cordylidae+Xantusiidae) clade. Within skinks the subfamily Acontinae is monophyletic and sister group to all remaining skinks. There is no support for the monophyly of the subfamilies Lygosominae and Scincinae, but sub-Saharan African scincines+Feylinia form a well supported monophyletic group. The monophyly of Scelotes is confirmed, and support is found for two geographic groups within the genus. Reconstructions of ancestral states for limb and digital characters show limited support for the reversal or gain of both digits and limbs, but conservative interpretation of the results suggest that limb loss is common, occurring multiple times throughout evolutionary history, and is most likely not reversible.  相似文献   

5.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   

6.
7.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

8.
We present a molecular phylogeny of Nitidulidae based on thirty ingroup taxa representing eight of the ten currently recognized subfamilies. Approximately 10 K base pairs from seven loci (12S, 16S, 18S, 28S, COI, COII and H3) were used for the phylogenetic reconstruction. The phylogeny supports the following main conclusions: (i) Cybocephalidae are formally recognized as a distinct family not closely related to Nitidulidae and its constituent taxa are defined; (ii) Kateretidae are sister to Nitidulidae; (iii) Cryptarchinae are monophyletic and sister to the remaining nitidulid subfamilies; (iv) subfamily Prometopinae stat. res. is reinstated and defined, to accommodate taxa allied to Axyra Erichson, Prometopia Erichson and Megauchenia MacLeay; (v) Amphicrossinae, Carpophilinae and Epuraeinae are shown to be closely related taxa within a well‐supported monophyletic clade; (vi) tribal affinities and respective monophyly within Nitidulinae are poorly resolved by our data and must be more rigorously tested as there was little or no support for prior morphologically based tribes or genus‐level complexes; (vii) Nitidulinae are found to be paraphyletic with respect to Cillaeinae and Meligethinae, suggesting that they should either be subsumed as tribes, or Nitidulinae should be divided into several subfamilies to preserve the status of Cillaeinae and Meligethinae; (viii) Teichostethus Sharp stat. res. is not a synonym of Hebascus Erichson and the former is reinstated as a valid genus. These conclusions and emendations are discussed in detail and presented within a morphological framework.  相似文献   

9.
The classification and generic definition in the tropical–subtropical fern family Lindsaeaceae have been uncertain and have so far been based on morphological characters only. We have now studied the evolutionary history of the Lindsaeaceae by simultaneously optimizing 55 morphological characters, two plastid genes (rpoC1 and rps4) and three non‐coding plastid intergenic spacers (trnL‐F, rps4‐trnS and trnH‐psbA). Our data set included all genera associated with Lindsaeaceae, except Xyropteris, and c. 73% of the currently accepted species. The phylogenetic relationships of the lindsaeoid ferns with two enigmatic genera that have recently been included in the Lindsaeaceae, Cystodium and Lonchitis, remain ambiguous. Within the monophyletic lindsaeoids, we found six well‐supported and diagnostic clades that can be recognized as genera: Sphenomeris, Odontosoria, Osmolindsaea, Nesolindsaea, Tapeinidium and Lindsaea. Sphenomeris was shown to be monotypic; most taxa formerly placed in that genus belong to the Odontosoria clade. Ormoloma is embedded within Lindsaea and therefore does not merit recognition as a genus. Tapeinidium is sister to a clade with some species formerly placed in Lindsaea that are morphologically distinct from that genus and are transferred to Osmolindsaea and Nesolindsaea, proposed here as two new genera. We do not maintain the current subgeneric classification of Lindsaea itself, because neither of the two generally accepted subgenera (Lindsaea and Odontoloma) is monophyletic, and most of the sections also appear unnatural. Nesolindsaea shows an ancient biogeographical link between Sri Lanka and the Seychelles and many of the main clades within Lindsaea have geographically disjunct distributions. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 305–359.  相似文献   

10.
Sponges are among the most species‐rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model‐based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single‐copy nuclear protein‐coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax, C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera, C. longissima, C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model‐based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.  相似文献   

11.
We investigated the phylogenetic relationships and estimated the history of species diversification and biogeography in the bufonid genus Ansonia from Southeast Asia, a unique organism with tadpoles adapted to life in strong currents chiefly in montane regions and also in lowland rainforests. We estimated phylogenetic relationships among 32 named and unnamed taxa using 2461 bp sequences of the mitochondrial 12S rRNA, tRNAval, and 16S rRNA genes with equally-weighted parsimony, maximum likelihood, and Bayesian methods of inference. Monophyletic clades of Southeast Asian members of the genus Ansonia are well-supported, allowing for the interpretation of general biogeographic conclusions. The genus is divided into two major clades. One of these contains two reciprocally monophyletic subclades, one from the Malay Peninsula and Thailand and the other from Borneo. The other major clade primarily consists of Bornean taxa but also includes a monophyletic group of two Philippine species and a single peninsular Malaysian species. We estimated absolute divergence times using Bayesian methods with external calibration points to reconstruct the relative timing of faunal exchange between the major landmasses of Southeast Asia.  相似文献   

12.
Members of the family Conopidae (Diptera) have been the focus of little targeted phylogenetic research. The most comprehensive test of phylogenetic support for the present subfamily classification of Conopidae is presented here using 66 specimens, including 59 species of Conopidae and seven outgroup taxa. Relationships among subfamily clades are also explored. A total of 6824 bp of DNA sequence data from five gene regions (12S ribosomal DNA, cytochrome c oxidase subunit I, cytochrome b, 28S ribosomal DNA and alanyl‐tRNA synthetase) are combined with 111 morphological characters in a combined analysis using both parsimony and Bayesian methods. Parsimony analysis recovers three shortest trees. Bayesian analysis recovers a nearly identical tree. Five monophyletic subfamilies of Conopidae are recovered. The rarely acknowledged Zodioninae is restored, including the genera Zodion and Parazodion. The genus Sicus is removed from Myopinae. Morphological synapomorphies are discussed for each subfamily and inter‐subfamily clade, including a comprehensive review of the character interpretaions of previous authors. Included are detailed comparative illustrations of male and female genitalia of representatives of all five subfamilies with new morphological interpretation.  相似文献   

13.
We report on the first detailed study of the atlas–axis complex in the lizard clade Dibamidae, a family of poorly known fossorial squamates distributed in tropical or subtropical climates. This skeletal bridge is characterized by several features, such as the complete absence of the first intercentrum or the appearance of the first free cervical rib on the axis (usually less developed in Dibamus relative to that in Anelytropsis). Our study shows morphological differences of the atlas–axis complex in the Mexican blind lizard Anelytropsis relative to those of Asian Dibamus, the only two known extant genera of this clade. With regard to taxonomy and phylogenetic topology of the Dibamidae within Squamata, a huge conflict exists between morphology versus molecules. The morphology of the atlas–axis complex is therefore compared with several potential sister clades + Sphenodon. Dibamids share several features with limbless Gekkota, Scincoidea, and Amphisbaenia. The complete absence of the first intercentrum is observed in Rhineura floridana and in Ateuchosaurus chinensis as well, and the free rib associated with the synapophyses of the axis is also present in Acontias meleagris. However, some of these features may result from a limbless, burrowing ecology and thus could represent homoplastic characters. In any case, the morphology of the atlas–axis shows that dibamids share most character states with skinks. Although the atlas–axis complex forms only an additional source of information, this conclusion is consistent with most morphological rather than molecular tree topologies.  相似文献   

14.
The ants in the subfamily Amblyoponinae are an old, relictual group with an unusual suite of morphological and behavioural features. Adult workers pierce the integument of their larvae to imbibe haemolymph, earning them the vernacular name ‘dracula ants’. We investigate the phylogeny of this group with a data set based on 54 ingroup taxa, 23 outgroups and 11 nuclear gene fragments (7.4 kb). We find that the genus Opamyrma has been misplaced in this subfamily: it is a member of the leptanilline clade and sister to all other extant Leptanillinae. Transfer of Opamyrma to Leptanillinae renders the Amblyoponinae monophyletic. The enigmatic Afrotropical genus Apomyrma is sister to all other amblyoponines, and the latter cleave into two distinct and well‐supported clades, here termed POA and XMMAS. The POA clade, containing Prionopelta, Onychomyrmex and Amblyopone, is well resolved internally, and its structure supports synonymy of the genus Concoctio under Prionopelta ( syn.n. ). The XMMAS clade comprises two well‐supported groups: (i) a predominantly Neotropical clade, for which we resurrect the genus name Fulakora ( stat.r., stat.n. ), with junior synonyms Paraprionopelta ( syn.n. ) and Ericapelta ( syn.n. ); and (ii) the remaining taxa, or ‘core XMMAS’, which are manifested in our study as a poorly resolved bush of about a dozen lineages, suggesting rapid radiation at the time of their origin. Most of these XMMAS lineages have been assigned to the catch‐all genus Stigmatomma, but the more distinctive elements have been treated as separate genera (Xymmer, Mystrium, Myopopone and Adetomyrma). Resolution of basal relationships in the core XMMAS clade and reconfiguration of ‘Stigmatomma’ to restore monophyly of all named genera will require more extensive genetic data and additional morphological analysis. However, the genus Bannapone can be synonymized under Stigmatomma ( syn.n. ) because it is embedded within a clade that contains S. denticulatum, the type species of Stigmatomma. Divergence dating analysis indicates that crown Amblyoponinae arose in the mid‐Cretaceous, about 107 Ma (95% highest probability density: 93–121 Ma). The POA and XMMAS clades have estimated crown ages of 47 and 73 Ma, respectively. The initial burst of diversification in the core XMMAS clade occurred in the Late Paleocene/Early Eocene (50–60 Ma). Ancestral range reconstruction suggests that amblyoponines originated in the Afrotropics, and dispersed to the Indo‐Malayan region and to the New World. During none of these dispersal events did the ants break out of their cryptobiotic lifestyle.  相似文献   

15.
As a step towards understanding the higher‐level phylogeny and evolutionary affinities of quadrifid noctuoid moths, we have undertaken the first large‐scale molecular phylogenetic analysis of the moth family Erebidae, including almost all subfamilies, as well as most tribes and subtribes. DNA sequence data for one mitochondrial gene (COI) and seven nuclear genes (EF‐1α, wingless, RpS5, IDH, MDH, GAPDH and CAD) were analysed for a total of 237 taxa, principally type genera of higher taxa. Data matrices (6407 bp in total) were analysed by parsimony with equal weighting and model‐based evolutionary methods (maximum likelihood), which revealed a well‐resolved skeleton phylogenetic hypothesis with 18 major lineages, which we treat here as subfamilies of Erebidae. We thus present a new phylogeny for Erebidae consisting of 18 moderate to strongly supported subfamilies: Scoliopteryginae, Rivulinae, Anobinae, Hypeninae, Lymantriinae, Pangraptinae, Herminiinae, Aganainae, Arctiinae, Calpinae, Hypocalinae, Eulepidotinae, Toxocampinae, Tinoliinae, Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae. Where possible, each monophyletic lineage is diagnosed by autapomorphic morphological character states, and within each subfamily, monophyletic tribes and subtribes can be circumscribed, most of which can also be diagnosed by morphological apomorphies. All additional taxa sampled fell within one of the four previously recognized quadrifid families (mostly into Erebidae), which are now found to include two unusual monobasic taxa from New Guinea: Cocytiinae (now in Erebidae: Erebinae) and Eucocytiinae (now in Noctuidae: Pantheinae).  相似文献   

16.
The relationships within the mongooses (Herpestidae) have been recently reconsidered on the basis of molecular data. However, these studies failed to completely resolve the relationships within the subfamily Herpestinae. Moreover, the species of the genus Bdeogale have not been included in previous studies. Three genes were sequenced, Cytochrome b, ND2 and Transthyretin intron I, for 20 species of Herpestidae. The results show that the Herpestidae form two clades, corresponding to the traditional Herpestinae and Mungotinae, but with Cynictis included in the former rather than the latter. Within the Herpestinae, the genus Herpestes is not monophyletic. A newly proposed clade groups Bdeogale, Cynictis, Ichneumia and Rynchogale. Some morphological and karyological characters were mapped on the trees so as to characterize the newly defined molecular groups.  相似文献   

17.
Phytophagous ladybird beetles of the tribe Epilachnini are a cosmopolitan, species‐rich group of significant economic importance as pests of agricultural crops. The tribe is well characterized morphologically and clearly monophyletic, but very little is known about its internal phylogenetic relationships and their genus‐level taxonomy. In order to infer the evolutionary history of Epilachnini, test its monophyly and provide a phylogeny‐based classification, we assembled a comprehensive dataset, consisting of four DNA markers (18S and 28S rRNA and 16S, COI mtDNA) and a matrix of 104 morphological characters for 153 species of Epilachnini representing all previously recognised genera, ~11% of the known species, and 14 outgroup taxa. Molecular, morphological and combined datasets were analysed using maximum likelihood, parsimony and Bayesian inference. Bayes factors and Approximately Unbiased tests (AU) were used to compare alternative phylogenetic hypotheses of unconstrained and backbone‐constrained analysis. Only 14 of the 25 included genera were recovered monophyletic, as originally defined. Afidentula Kapur, Afidenta Dieke, Afissula Kapur, Epilachna Chevrolat, Henosepilachna Li Toxotoma Weise and Mada Mulsant are shown to be poly‐ or paraphyletic; Chnootriba Chevrolat, Subafissa Bielawski, Lalokia Szawaryn & Tomaszewska and Papuaepilachna Szawaryn & Tomaszewska form monophyletic groups within larger clades of genus level. All of these genera are redefined here. The two largest genera of Epilachnini, Epilachna Chevrolat and Henosepilachna Li were represented by multiple monophyletic clades, which we described as new genera: Chazeauiana Tomaszewska & Szawaryn gen.n. ; Diekeana Tomaszewska & Szawaryn gen.n .; Fuerschia Tomaszewska & Szawaryn gen.n. and Ryszardia Tomaszewska & Szawaryn gen.n . The following new synonyms are proposed: Afissa Dieke (=Afissula Kapur); Henosepilachna Li in Li & Cook (=Subafissa Bielawski); Papuaepilachna Szawaryn & Tomaszewska (=Lalokia Szawaryn & Tomaszewska). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:440E7FA4‐C859‐47E0‐8335‐30D478CBA8FA .  相似文献   

18.
A partial sequence of the cytb gene (382 bp) was amplified and sequenced from 35 individuals (mainly museum specimens) of the genus Pernis representing all valid taxa (10) and two taxa (P. p. gurneyi, P. p. japonicus) with questionable validity as well as representatives of the Old World Perninae, namely Henicopernis and Aviceda, to assess their relationships to the genus Pernis. Furthermore, Gypaetus barbatus, Neophron percnopterus, and Buteo buteo were included as outgroup taxa. In the trees derived from the sequence data, Aviceda represents the sister group of the genus Pernis. The genus Henicopernis and the Old World vultures Gypaetus andNeophron appear rather distantly related to Pernis. Within the genus Pernis, two of the described species (Pernis apivorus, Pernis ptilorhyncus) form monophyletic groups, whereas the relationships of the two clades representing three subspecies of Pernis celebensis are still uncertain. Although this study is based on comparatively short DNA‐sections, the trees deduced from these sequences can be considered as a first approach for inferring the phylogenetic relationships of the genus Pernis and related genera and for addressing questions concerning the evolutionary history, biogeography, and systematics of this group.  相似文献   

19.
Map turtles of the genus Graptemys are native to North America, where a high degree of drainage endemism is believed to have shaped current diversity. With 14 species and one additional subspecies, Graptemys represents the most diverse genus in the family Emydidae. While some Graptemys species are characterized by pronounced morphological differences, previous phylogenetic analyses have failed yet to confirm significant levels of genetic divergence for many taxa. As a consequence, it has been debated whether Graptemys is taxonomically inflated or whether the low genetic divergence observed reflects recent radiations or ancient hybridization. In this study, we analysed three mtDNA blocks (3228 bp) as well as 12 nuclear loci (7844 bp) of 89 specimens covering all species and subspecies of Graptemys. Our analyses of the concatenated mtDNA sequences reveal that the widespread G. geographica constitutes the sister taxon of all other Graptemys species. These correspond to two clades, one comprised of all broad‐headed Graptemys species and another clade containing the narrow‐headed species. Most species of the broad‐headed clade are reciprocally monophyletic, except for G. gibbonsi and G. pearlensis, which are not differentiated. By contrast, in the narrow‐headed clade, many currently recognized species are not monophyletic and divergence is significantly less pronounced. Haplotype networks of phased nuclear loci show low genetic divergence among taxa and many shared haplotypes. Principal component analyses using coded phased nuclear DNA sequences revealed eight distinct clusters within Graptemys that partially conflict with the terminal mtDNA clades. This might be explained by male‐mediated gene flow across drainage basins and female philopatry within drainage basins. Our results support that Graptemys is taxonomically oversplit and needs to be revised.  相似文献   

20.
Tordylium is a medium‐sized genus characterized by an annual habit, 1–3‐pinnate leaves, dorsally compressed mericarps, and thickened mericarp margins. Eighteen Tordylium species occur in Turkey, of which seven are endemic. Although the morphology of the genus is well known, evolutionary relationships among its species have never been evaluated. In this study, phylogenetic relationships within Tordylium are investigated using parsimony analysis based on morphological data from 17 ingroup and 15 outgroup taxa from Turkey. The results indicate that Tordylium is paraphyletic due to the inclusion of Ormosciadium. Further, it suggests that Hasselquistia, Condylocarpus and Ainsworthia are nested within Tordylium, confirming their current taxonomic treatment as synonyms. Within the paraphyletic Tordylium, two major clades are apparent, but these clades are not compatible with the current sub‐generic classification. Tordylium lanatum, T. aegyptiacum and T. elegans, which have dimorphic mericarps, form a monophyletic subclade. In addition, it is suggested that T. aegaeum should be accepted as a distinct species rather than as a synonym of T. pestalozzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号