首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
X-ray diffraction patterns from mammalian heart muscle   总被引:8,自引:0,他引:8  
We have obtained light and X-ray diffraction patterns from trabecular and papillary muscles of various mammalian hearts in the living resting state and in rigor. Equatorial X-ray diffraction patterns from living muscles show the 1,0 and 1,1 reflections from a hexagonal lattice of filaments. The lattice spacing varies with sarcomere length over the observable range (2·0 to 2·5 μm) in such a manner that the lattice volume remains constant. In the living resting state the 1,0 reflection is stronger than the 1,1 reflection, whereas in rigor the 1,1 reflection is almost as strong as the 1,0 reflection. These intensity changes are similar to those found in vertebrate skeletal muscle, suggesting that the mechanism of cross-bridge attachment to actin is similar in both muscles.Two types of meridional X-ray diffraction pattern were observed in muscles in different conditions. One type, obtained from dead or glycerol-extracted muscles or from muscles treated with iodoacetate, showed a strong actin-related pattern but only a weak pattern associated with myosin. This type of pattern was similar to that from vertebrate skeletal muscle in rigor. The other type, obtained from living, resting muscle, showed a weaker actin pattern but a stronger myosin pattern. The myosin pattern included layer-line reflections associated with projections from the thick filaments. This second type of pattern was similar to that from resting vertebrate skeletal muscle, but the layer lines were weaker. The weakness of the myosin layer lines may indicate that part of the high resting tension found in heart muscle arises from a small amount of actin-myosin interaction in the resting state. Such interaction could provide a mechanism for varying the diastolic length of heart muscle and thereby the diastolic volume of the heart.  相似文献   

2.
The pattern given by contracting frog muscle can be followed with high time resolution using synchrotron radiation as a high-intensity X-ray source. We have studied the behaviour of the second actin layer-line (axial spacing of approximately 179 A) at an off-meridional spacing of approximately 0.023 A-1, a region of the diagram that is sensitive to the position of tropomyosin in the thin filaments. In confirmation of earlier work, we find that there is a substantial increase in the intensity of this part of the pattern during contraction. We find that the reflection reaches half its final intensity about 17 milliseconds after the stimulus at 6 degrees C. The changes in the equatorial reflections, which arise from movement of crossbridges towards the thin filaments, occur with a delay of about 12 to 17 milliseconds relative to this change in the actin pattern. In over-stretched muscle, where thick and thin filaments no longer overlap, the changes in the actin second layer-line still take place upon stimulation with a time course and intensity similar to that observed at full overlap. This indicates that tropomyosin movement, in response to calcium binding to troponin, is the first structural step in muscular contraction, and is the prerequisite for myosin binding. A change in intensity similar to that found in contracting muscle is seen in rigor, where tropomyosin is probably locked in the active position. During relaxation the earlier stages in the decrease in intensity of the second actin layer-line take place significantly sooner after the last stimulus than tension decay. In over-stretched muscles the intensity decay is appreciably faster than in the same muscles at rest length, where attached crossbridges may interfere with the return of tropomyosin to its resting position.  相似文献   

3.
Electron microscopy has shown that cross-bridges (CBs) are formed at the target zone that is periodically distributed on the thin filament in striated muscle. Here, by manipulating a single bead-tailed actin filament with optical tweezers, we measured the unbinding events of rigor CBs one by one on the surface of the A-band in rabbit skeletal myofibrils. We found that the spacings between adjacent CBs were not always the same, and instead were 36, 72, or 108 nm. Tropomyosin and troponin did not affect the CB spacing except for a relative increase in the appearance of longer spacing in the presence of Ca2+. In addition, in an in vitro assay where myosin molecules were randomly distributed, were obtained the same spacing, i.e., a multiple of 36 nm. These results indicate that the one-dimensional distribution of CBs matches with the 36-nm half pitch of a long helical structure of actin filaments. A stereospecific model composed of three actin protomers per target zone was shown to explain the experimental results. Additionally, the unbinding force (i.e., the binding affinity) of CBs for the reconstituted thin filaments was found to be larger and smaller relative to that for actin filaments with and without Ca2+, respectively.  相似文献   

4.
Rapid freezing followed by freeze-substitution has been used to study the ultrastructure of the myosin filaments of live and demembranated frog sartorius muscle in the states of relaxation and rigor. Electron microscopy of longitudinal sections of relaxed specimens showed greatly improved preservation of thick filament ultrastructure compared with conventional fixation. This was revealed by the appearance of a clear helical arrangement of myosin crossbridges along the filament surface and by a series of layer line reflections in computed Fourier transforms of sections, corresponding to the layer lines indexing on a 43 nm repeat in X-ray diffraction patterns of whole, living muscles. Filtered images of single myosin filaments were similar to those of negatively stained, isolated vertebrate filaments and consistent with a three-start helix. M-line and other non-myosin proteins were also very well preserved. Rigor specimens showed, in the region of overlapping myosin and actin filaments, periodicities corresponding to the 36, 24, 14.4 and 5.9 nm repeats detected in X-ray patterns of whole muscle in rigor; in the H-zone they showed a disordered array of crossbridges. Transverse sections, whose Fourier transforms extend to the (3, 0) reflection, supported the view, based on X-ray diffraction and conventional electron microscopy, that in the overlap zone of relaxed muscle most of the crossbridges are detached from the thin filaments while in rigor they are attached. We conclude that the rapid freezing technique preserves the molecular structure of the myofilaments closer to the in vivo state (as monitored by X-ray diffraction) than does normal fixation.  相似文献   

5.
Previous low-angle X-ray diffraction studies of various vertebrate skeletal muscles have shown the presence of two rich layer-line patterns, one from the myosin heads and based on a 429 A axial repeat, and one from actin filaments and based on a repeat of about 360-370 A. In addition, meridional intensities have been seen from C-protein (MyBP-C; at about 440 A and its higher orders) and troponin (at about 385 A and its orders). Using preparations of intact, relaxed, bony fish fin muscles and the ID-02 low-angle X-ray camera at the ESRF with a 10 m camera length we have now seen numerous, hitherto unreported, sampled, X-ray layer-lines many of which do not fit onto the previously observed repeats and which require interpretation. The new reflections all fall on the normal ("vertical") hexagonal lattice row-lines in the highly sampled, almost "crystalline", low-angle diffraction X-ray patterns from bony fish muscle, indicating that they all arise from the muscle A-band. However, they do not fall on a single axial repeat. In direct confirmation of our previous analysis, some of these new reflections are explained by the interaction in resting muscle between the N-terminal ends of myosin-bound C-protein molecules with adjacent actin filaments, possibly through the Pro-Ala-rich region. Other newly observed reflections lie on a much longer repeat, but they are most easily interpreted in terms of the arrangement of troponin on the actin filaments. If this is so, then the implication is that the actin filaments and their troponin complexes are systematically arranged in the fish muscle A-band lattice relative to the myosin head positions, and that these newly observed X-ray reflections, when fully analysed, will report on the shape and distribution of troponin molecules in the resting muscle A-band. The less certain contributions of titin and nebulin to these new reflections have also been tested and are described. Many of the new reflections do not appear to come from these known structures. There must be structural features of the A-band that have not yet been described.  相似文献   

6.
X-ray patterns from lobster and crayfish muscles show very clear layer lines from the thin filaments, well separated from the myosin layer lines. The intensities in patterns from relaxed muscles include an important contribution from the regulatory proteins, and allow the arrangement of the troponin complexes to be deduced. Moreover, the troponin diffraction indirectly provides an accurate value for the pitch of the actin helix in relaxed muscle.In rigor, the attachment of cross-bridges modifies the intensities. These X-ray patterns support Reedy's (1968) concept that cross-bridges in rigor attach only to certain azimuths on the actin filaments (“target areas”); the 145 Å repeat of their origins on the thick filaments is not reflected in the pattern of attachment. Our calculations show that the observed intensities agree quantitatively with those expected for models based on such attachment, but depend significantly on the locations of the troponin complexes. The arrangement of the filament components is discussed in terms of design requirements. Our conclusions may be applicable to many other muscles, especially insect flight muscle and other invertebrate muscles.  相似文献   

7.
Equatorial X-ray diffraction patterns have been studied from muscles at rest, during contraction and in rigor. It is confirmed that the relative intensity (I 1,0I 1,1) of the two main equatorial reflections depends both on the sarcomere length and on the state of the muscle; in any one state the ratio I 1,0I 1,1 increases as the sarcomere length of the muscle increases, while at any fixed sarcomere length the ratio is smaller for contracting muscle than for resting muscle and smaller still for rigor muscles. The change of I 1,0I 1,1 with change of state at constant sarcomere length is interpreted as being due to radial movement of cross-bridges: the average movement during contraction being about 40% of that in rigor.Over the whole range of sarcomere length studied (between 1.8 and 2.7 μm) there was no evidence for any change in lattice spacing when a muscle contracts isometrically.Muscles were studied generating tension after they had shortened actively against a load. The lattice spacings and intensity ratio I 1,0I 1,1 both changed during active shortening in a way entirely consistent with the sliding filament theory of contraction.  相似文献   

8.
A method that relates molecular structure to the forces that maintain it and to its X-ray diffraction pattern is described and applied to muscle. In a computer model, the potential energy of the moveable components (here the myosin heads) is minimized by letting them move down the steepest gradient in three dimensions from a variety of starting positions. Initial values are assumed for the parameters that determine the forces, and for those that define the structure and arrangement of the fixed components. The X-ray pattern expected from the resulting structures can be calculated in a straightforward manner and compared with relevant observed data. Discrepancies can then be minimized by varying the values initially assumed for the parameters, as in the conventional “trial and error” method.This first application of the present method is concerned with the effects of the hexagonal lattice on the myosin head configuration in thick filaments of the type found in vertebrate skeletal muscle. For that purpose, a very simple model was used with the following main features: smooth cylinders for the thin filaments and for the thick filament backbones, two spherical heads attached by Hookean springs to each point of a 93 helix on the surface of the backbone, and repulsive forces of the electrostatic double-layer type acting between each head and all other surfaces.The myosin head configuration was calculated for an isolated thick filament and a study was made of the effects of packing such filaments into a hexagonal lattice of various side spacings in the presence or absence of thin filaments. For the isolated filament, it was found that the 93 helical symmetry is maintained in the myosin head configuration and that the two heads of each molecule are splayed azimuthally. When such filaments are packed into the hexagonal lattice with thin filaments present, the 93 helical symmetry of the myosin head configuration is lost. As the lattice side spacing is reduced, the myosin heads become increasingly displaced not only in the radial and azimuthal directions but also in the axial direction, although they interact primarily with smooth cylinders. The axial separation of the two heads in each molecule becomes different in one level from that in the other two in the 43 nm axial repeat, thus increasing the repeat in projection onto the axis from 14.3 to 43 nm. This effect may contribute to the “forbidden meridionals” described by Huxley & Brown (1967). In the absence of thin filaments, the displacements of the myosin heads are much smaller, even when the lattice side spacing is reduced to that present in muscles stretched to non-overlap.Applying the method based on potential energy minimization to the evaluation of X-ray data from muscles in hypertonic Ringer reveals that, even in the case of patterns apparently free of lattice sampling (and thus normally considered to represent diffraction from single filaments), the interpretation must include the nearest myosin heads from neighbouring filaments, and that this may be necessary also for unsampled patterns obtained from muscles in normal Ringer. Furthermore, the method helps to explain several other major features of X-ray results obtained from muscles in the hypertonic state and from muscles stretched in normal Ringer to long sarcomere lengths including non-overlap. It is concluded that the method provides a powerful tool for the interpretation of muscle X-ray patterns.  相似文献   

9.
In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by ∼0.1% upon activation relative to the relaxing state and increased by ∼0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca2+-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca2+-binding and the second induced by actomyosin interaction.  相似文献   

10.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

11.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

12.
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca2+ sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.  相似文献   

13.
The Ca2+-dependent interaction of troponin I (TnI) with actin·tropomyosin (Tm) in muscle thin filaments is a critical step in the regulation of muscle contraction. Previous studies have suggested that, in the absence of Ca2+, TnI interacts with Tm and actin in reconstituted muscle thin filaments, maintaining Tm at the outer domain of actin and blocking myosin-actin interaction. To obtain direct evidence for this Tm-TnI interaction, we performed photochemical crosslinking studies using Tm labeled with 4-maleimidobenzophenone at position 146 or 174 (Tm*146 or Tm*174, respectively), reconstituted with actin and troponin [composed of TnI, troponin T (TnT), and troponin C] or with actin and TnI. After near-UV irradiation, SDS gels of the Tm*146-containing thin filament showed three new high-molecular-weight bands determined to be crosslinked products Tm*146-TnI, Tm*146-troponin C, and Tm*146-TnT using fluorescence-labeled TnI, mass spectrometry, and Western blot analysis. While Tm*146-TnI was produced only in the absence of Ca2+, the production of other crosslinked species did not show Ca2+ dependence. Tm*174 mainly crosslinked to TnT. In the absence of actin, a similar crosslinking pattern was obtained with a much lower yield. A tryptic peptide from Tm*146-TnI with a molecular mass of 2601.2 Da that was not present in the tryptic peptides of Tm*146 or TnI was identified using HPLC and matrix-assisted laser desorption/ionization time-of-flight. This was shown, using absorption and fluorescence spectroscopy, to be the 4-maleimidobenzophenone-labeled peptide from Tm crosslinked to TnI peptide 157-163. These data, which show that a region in the C-terminal domain of TnI interacts with Tm in the absence of Ca2+, support the hypothesis that a TnI-Tm interaction maintains Tm at the outer domain of actin and will help efforts to localize troponin in actin·Tm muscle thin filaments.  相似文献   

14.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   

15.
To clarify the extensibility of thin actin and thick myosin filaments in muscle, we examined the spacings of actin and myosin filament-based reflections in x-ray diffraction patterns at high resolution during isometric contraction of frog skeletal muscles and steady lengthening of the active muscles using synchrotron radiation as an intense x-ray source and a storage phosphor plate as a high sensitivity, high resolution area detector. Spacing of the actin meridional reflection at approximately 1/2.7 nm-1, which corresponds to the axial rise per actin subunit in the thin filament, increased about 0.25% during isometric contraction of muscles at full overlap length of thick and thin filaments. The changes in muscles stretched to approximately half overlap of the filaments, when they were scaled linearly up to the full isometric tension, gave an increase of approximately 0.3%. Conversely, the spacing decreased by approximately 0.1% upon activation of muscles at nonoverlap length. Slow stretching of a contracting muscle increased tension and increased this spacing over the isometric contraction value. Scaled up to a 100% tension increase, this corresponds to a approximately 0.26% additional change, consistent with that of the initial isometric contraction. Taken together, the extensibility of the actin filament amounts to 3-4 nm of elongation when a muscle switches from relaxation to maximum isometric contraction. Axial spacings of the layer-line reflections at approximately 1/5.1 nm-1 and approximately 1/5.9 nm-1 corresponding to the pitches of the right- and left-handed genetic helices of the actin filament, showed similar changes to that of the meridional reflection during isometric contraction of muscles at full overlap. The spacing changes of these reflections, which also depend on the mechanical load on the muscle, indicate that elongation is accompanied by slight changes of the actin helical structure possibly because of the axial force exerted by the actomyosin cross-bridges. Additional small spacing changes of the myosin meridional reflections during length changes applied to contracting muscles represented an increase of approximately 0.26% (scaled up to a 100% tension increase) in the myosin periodicity, suggesting that such spacing changes correspond to a tension-related extension of the myosin filaments. Elongation of the myosin filament backbone amounts to approximately 2.1 nm per half sarcomere. The results indicate that a large part (approximately 70%) of the sarcomere compliance of an active muscle is caused by the extensibility of the actin and myosin filaments; 42% of the compliance resides in the actin filaments, and 27% of it is in the myosin filaments.  相似文献   

16.
The structures of the actin and myosin filaments of striated muscle have been studied extensively in the past by sectioning of fixed specimens. However, chemical fixation alters molecular details and prevents biochemically induced structural changes. To overcome these problems, we investigate here the potential of cryosectioning unfixed muscle. In cryosections of relaxed, unfixed specimens, individual myosin filaments displayed the characteristic helical organization of detached cross-bridges, but the filament lattice had disintegrated. To preserve both the filament lattice and the molecular structure of the filaments, we decided to section unfixed rigor muscle, stabilized by actomyosin cross-bridges. The best sections showed periodic, angled cross-bridges attached to actin and their Fourier transforms displayed layer lines similar to those in x-ray diffraction patterns of rigor muscle. To preserve relaxed filaments in their original lattice, unfixed sections of rigor muscle were picked up on a grid and relaxed before negative staining. The myosin and actin filaments showed the characteristic helical arrangements of detached cross-bridges and actin subunits, and Fourier transforms were similar to x-ray patterns of relaxed muscle. We conclude that the rigor structure of muscle and the ability of the filament lattice to undergo the rigor-relaxed transformation can be preserved in unfixed cryosections. In the future, it should be possible to carry out dynamic studies of active sacromeres by cryo-electron microscopy.  相似文献   

17.
The sliding filament model for muscular contraction supposes that an appropriately directed force is developed between the actin and myosin filaments by some process in which the cross-bridges are involved. The cross-bridges between the filaments are believed to represent the parts of the myosin molecules which possess the active sites for ATPase activity and actin-binding ability, and project out sidewise from the backbone of the thick filaments. The arrangement of the cross-bridges is now being studied by improved low-angle X-ray diffraction techniques, which show that in a resting muscle, they are arranged approximately but not exactly in a helical pattern, and that there are other structural features of the thick filaments which give rise to additional long periodicities shown up by the X-ray diagram. The actin filaments also contain helically arranged subunits, and both the subunit repeat and the helical repeat are different from those in the myosin filaments. Diffraction diagrams can be obtained from muscles in rigor (when permanent attachment of the cross-bridges to the actin subunits takes place) and now, taking advantage of the great increase in the speed of recording, from actively contracting muscles. These show that changes in the arrangement of the cross-bridges are produced under both these conditions and are no doubt associated in contraction with the development of force. Thus configurational changes of the myosin component in muscle have been demonstrated: these take place without any significant over-all change in the length of the filaments.  相似文献   

18.
Reciprocal coupling between troponin C and myosin crossbridge attachment   总被引:5,自引:0,他引:5  
A S Zot  J D Potter 《Biochemistry》1989,28(16):6751-6756
The attachment of cycling myosin crossbridges to actin and the resultant muscle contraction are regulated in skeletal muscle by the binding of Ca2+ to the amino-terminal, regulatory sites of the troponin C (TnC) subunit of the thin filament protein troponin. Conversely, the attachment of crossbridges to actin has been shown to alter the affinity of TnC for Ca2+. In this study, fluorescently labeled TnC incorporated into reconstituted thin filaments was used to investigate the relationship between crossbridge attachment to actin and structural changes in the amino-terminal region of TnC. Fluorescence intensity changes were measured under the following conditions: saturating [Ca2+] in the absence of crossbridges, rigor crossbridge attachment in the presence and absence of Ca2+, and cycling crossbridge attachment. The percent of heavy meromyosin crossbridges associated with the thin filaments under these conditions was also determined. The results show that, in addition to the binding of Ca2+ to TnC, the attachment of both rigor and cycling crossbridges to actin alters the structure of TnC near the regulatory, Ca2+-specific sites of the molecule. A differential coupling between weakly versus strongly bound crossbridge states and TnC structure was detected, suggesting a possible differential regulation of these states by conformational changes in TnC. These findings illustrate a reciprocal coupling, via thin filament protein interactions, between structural changes in TnC and the attachment of myosin crossbridges to actin, such that each can influence the other, and indicate that TnC is not simply an on-off switch but may exist in a number of different conformations.  相似文献   

19.
Abstract. A light and electron immunohistochemical study was carried out on the body wall muscles of the chaetognath Sagitta friderici for the presence of a variety of contractile proteins (myosin, paramyosin, actin), regulatory proteins (tropomyosin, troponin), and structural proteins (α‐actinin, desmin, vimentin). The primary muscle (~80% of body wall volume) showed the characteristic structure of transversely striated muscles, and was comparable to that of insect asynchronous flight muscles. In addition, the body wall had a secondary muscle with a peculiar structure, displaying two sarcomere types (S1 and S2), which alternated along the myofibrils. S1 sarcomeres were similar to those in the slow striated fibers of many invertebrates. In contrast, S2 sarcomeres did not show a regular sarcomeric pattern, but instead exhibited parallel arrays of 2 filament types. The thickest filaments (~10–15 nm) were arranged to form lamellar structures, surrounded by the thinnest filaments (~6 nm). Immunoreactions to desmin and vimentin were negative in both muscle types. The primary muscle exhibited the classical distribution of muscle proteins: actin, tropomyosin, and troponin were detected along the thin filaments, whereas myosin and paramyosin were localized along the thick filaments; immunolabeling of α‐actinin was found at Z‐bands. Immunoreactions in the S1 sarcomeres of the secondary muscle were very similar to those found in the primary muscle. Interestingly, the S2 sarcomeres of this muscle were labeled with actin and tropomyosin antibodies, and presented no immunore‐actions to both myosin and paramyosin. α‐Actinin in the secondary muscle was only detected at the Z‐lines that separate S1 from S2. These findings suggest that S2 are not true sarcomeres. Although they contain actin and tropomyosin in their thinnest filaments, their thickest filaments do not show myosin or paramyosin, as the striated muscle thick myofilaments do. These peculiar S2 thick filaments might be an uncommon type of intermediate filament, which were labeled neither with desmin or vimentin antibodies.  相似文献   

20.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号