首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
A gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase Al were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.  相似文献   

2.
We used the surface protein expression (SPEX) system to express an anchored and a secreted form of staphylococcal nuclease A (NucA) from gram-positive bacteria. NucA is a small ( approximately 18 kDa), extracellular, monomeric enzyme from Staphylococcus aureus. A deletion of amino acids 114-119 causes monomeric NucA to form homodimers. The DNA sequence encoding either wild-type or deletion mutant NucA was cloned via homologous recombination into Streptococcus gordonii. S. gordonii strains expressing either anchored or secreted, monomeric or dimeric NucA were isolated and tested for enzymatic activity using a novel fluorescence enzyme assay. We show that active monomeric and dimeric NucA enzyme can be expressed either anchored on the cell surface or secreted into the culture medium. The activity of the dimer NucA was approximately 100-fold less than the monomer. Secreted and anchored, monomeric NucA migrated on SDS-polyacrylamide gels at approximately 18 or approximately 30 kDa, respectively. In addition, similar to S. aureus NucA, the S. gordonii recombinant NucA enzyme was dependent on CaCl(2) and was heat stable. In contrast, however, the recombinant NucA activity was maximal at pH 7.0-7.5 whereas S. aureus NucA was maximal at pH 9.0. These results show, for the first time, expression of active enzyme and polymeric protein in secreted and anchored forms using SPEX. This further demonstrates the utility of this gram-positive surface protein expression system as a potential commensal bacterial delivery system for active, therapeutic enzymes, biopharmaceuticals, or vaccines.  相似文献   

3.
While Escherichia coli expression systems have been widely utilized for the production of heterologous proteins, these systems have limitations with regard to the production of particular protein products, including poor expression, expression of insoluble proteins into inclusion bodies, and/or expression of a truncated product. Using the surface protein expression (SPEX) system, chromosomally integrated heterologous genes are expressed and secreted into media by the naturally competent gram-positive organism Streptococcus gordonii. After E. coli turned out to be an inappropriate expression system to produce sufficient quantities of intact product, we successfully utilized SPEX to produce the heterologous antigen BH4XCRR that is designed from sequences homologous to the S. pyogenes M-protein C-repeat region. To further enhance production of this product by S. gordonii, we sought to develop a novel system for the production and secretion of heterologous proteins. We observed that under various growth conditions, S. gordonii secreted high levels of a 172 kDa protein, which was identified by N-terminal sequence analysis as the glucosyltransferase GTF. Here we report on the development of a plasmid-based expression system, designated as PLEX, which we used to enhance production of BH4XCRR by S. gordonii. A region from the S. gordonii chromosome that contains the positive regulatory gene rgg, putative gtfG promoter, and gtfG secretion-signal sequence was cloned into the E. coli/Streptococcus shuttle plasmid pVA838. Additionally, the bh4xcrr structural gene was cloned into the same plasmid downstream and in-frame with rgg and gtfG. This plasmid construct was transformed into S. gordonii and BH4XCRR was detected in culture supernatants from transformants at greater concentrations than in supernatants from a SPEX strain expressing the same product. BH4XCRR was easily purified from culture supernatant using a scalable two-step purification process involving hydrophobic-interaction and gel-filtration chromatography.  相似文献   

4.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

5.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

6.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

7.
A novel dual function (reporter and affinity) tag system has been developed. Expression vectors have been constructed to express polypeptides in Escherichia coli cells as C-terminal fusions with esterase 2, a 34-kDa protein from Alicyclobacillus acidocaldarius. Presence of esterase allows to monitor the expression of fusion proteins spectrophotometrically or by activity staining in the polyacrylamide gels. The fusion proteins can be purified from crude bacterial extracts under non-denaturing conditions by one step affinity chromatography on Sepharose CL-6B immobilized trifluoromethyl-alkyl-ketone. The esterase carrier can be cleaved from fusion proteins by digestion with amino acid sequence-specific proteases blood coagulation factor Xa. The system has been used successfully for the expression and purification of polypeptides from different prokaryotic and eukaryotic organisms.  相似文献   

8.
There is no systematic examination of affinity tag utility in Gram-positive bacteria, which limits the investigation of protein function in this important group of bacteria as specific antibodies for many of native proteins are generally not available. In this study, we utilized an E. coli-streptococcal shuttle vector pVT1666 and constructed two sets of expression plasmids pVPT-CTag and pVPT-NTag, with each set containing five affinity tags (GST, GFP, HSV, T7 and Nano) that can be fused to either the C- or N-terminus of a target protein. A putative glycosyltransferase (Gtf2) essential for Fap1 glycosylation was used to demonstrate the utility of the cassettes in detection of Gtf2 fusion proteins, and the biological relevance of the proteins in our working strain Streptococcus parasanguinis. GFP and T7 tags were readily expressed in S. parasanguinis as either an N- or C-terminal fusion to Gtf2. Only the C- terminal fusion of GST and HSV were able to be identified in S. parasanguinis. The Nano tag was not detected in either E. coli or S. parasanguinis. Genetic complementation experiments indicated that all the tagged Gtf2 fusion proteins could restore the Gtf2 function in the null mutant except for the Nano-tagged Gtf2 at its N-terminal fusion. Using a T7-tagged Gtf2 fusion construct, we demonstrated that the fusion cassette is also useful in detection of the fusion tag expression in other streptococci including S. mutans, S. pneumoniae and S. sanguinis. Therefore, the expression cassettes we constructed will be a useful tool not only to investigate protein-protein interactions in Fap1 biogenesis in S. parasanguinis, but also to study protein functions in other gram-positive bacteria in which pVT1666 replicates.  相似文献   

9.
Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.  相似文献   

10.
Human Fas ligand is a medically important membrane glycoprotein that induces the apoptosis of harmful cells. A new secretory expression and purification method was devised for the production of a large amount of recombinant human Fas ligand extracellular domain (hFasLECD) by Pichia pastoris. The expression plasmid containing a synthetic hFasLECD gene designed using yeast optimal codons was constructed for the secretion of hFasLECD. The secreted product exhibited the specific binding activity toward soluble human Fas receptor extracellular domain-human IgG(1)-Fc domain fusion protein, and the receptor-ligand complex was immunoprecipitated by Protein A conjugated agarose-gel beads. The influences of the N- and C- terminal addition of FLAG/(His)(6) tag spaced by pentaglycine sequence and the sequentially accumulative deletions of N-glycosylation sites within hFasLECD were investigated. The secretion of functional hFasLECD was retained after the N-terminal tagging and the deletion of either single or double N-glycosylation sites. As judged from SDS-PAGE analysis of the culture supernatant, the N-terminal addition of FLAG-(Gly)(5) tag and the deletion of single N-glycosylation site via N184Q mutation increased the secretion level of the product. In contrast, the C-terminal tagged genes and all N-glycosylation sites deleted gene failed to direct the secretion of functional hFasLECD. The secreted products in the culture medium were purified using a cation-exchange chromatography and a gel-filtration chromatography. The purified hFasLECDs existed as trimers composed of a mixture of monomer species in different glycosylation states. Approximately five milligram of functional N-terminal FLAG-(Gly)(5) tagged hFasLECD N184Q mutant was obtained from one liter culture supernatant.  相似文献   

11.
The plasminogen activator staphylokinase (SAK) is a promising thrombolytic agent for treatment of myocardial infarction. It can specifically stimulate the thrombolysis of both erythrocyte-rich and platelet-rich clots. However, SAK lacks fibrin-binding and thrombin inhibitor activities, two functions which would supplement and potentially improve its thrombolytic potency. Creating a recombinant fusion protein is one approach for combining protein domains with complementary functions. To evaluate SAK for use in a translational fusion protein, both N- and C-terminal fusions to SAK were constructed by using hirudin as a fusion partner. Recombinant fusion proteins were secreted from Bacillus subtilis and purified from culture supernatants. The rate of plasminogen activation by SAK was not altered by the presence of an additional N- or C-terminal protein sequence. However, cleavage at N-terminal lysines within SAK rendered the N-terminal fusion unstable in the presence of plasmin. The results of site-directed mutagenesis of lysine 10 and lysine 11 in SAK suggested that a plasmin-resistant variant cannot be created without interfering with the plasmin processing necessary for activation of SAK. Although putative plasmin cleavage sites are located at the C-terminal end of SAK at lysine 135 and lysine 136, these sites were resistant to plasmin cleavage in vitro. Therefore, C-terminal fusions represent stable configurations for developing improved thrombolytic agents based on SAK as the plasminogen activator component.  相似文献   

12.
We have constructed a set of plasmids that allow efficient expression of both N- and C-terminal fusions of proteins of interest to fluorescent proteins mCherry, Citrine, CFP and GFP in the Gram-positive pathogen Streptococcus pneumoniae. In order to improve expression of the fluorescent fusions to levels that allow their detection by fluorescence microscopy, we have introduced a 10 amino acid tag, named i-tag, at the N-terminal end of the fluorescent proteins. This caused increased expression due to improved translation efficiency and did not interfere with the protein localization in pneumococcal bacteria. Localizing fluorescent derivatives of FtsZ, Wzd and Wze in dividing bacteria validated the developed tools. The availability of the new plasmids described in this work should greatly facilitate studies of protein localization in an important clinical pathogen.  相似文献   

13.
In this study, we compared two gene fusion expression strategies using two rare codon genes (Ssh10b and MtGrxM) from archaea as a model system. Both genes can be highly expressed as N- or C-terminal fusion partners to GST or the intein/chitin-binding tag. However, the fusion protein with intein tag could not be cleaved, even under stringent conditions, possibly due to steric hindrance, thus preventing further purification. In contrast, the GST fusion system could increase protein expression level and the corresponding fusion protein could be easily cleaved by thrombin. After binding to glutathione sepharose, the fusion protein was cleaved on column, and a roughly purified protein fraction was eluted. This fraction was purified by heating at 80 degrees C for 10 min, followed by centrifugation. The correct total mass and N-terminal primary structure were confirmed by mass spectrometry and Edman degradation. Both constructs were used for in vitro expression, and similar results were obtained, indicating higher expression levels of the GST tag vs. intein/chitin tag. Taken together, our results suggest that the GST fusion system can be used as a considerable alternative to synthetic genes for the expression of rare codon genes. The affinity chromatography purification followed by a heating step is an efficient and convenient method for thermostable protein purification.  相似文献   

14.
Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins.  相似文献   

15.
Determination of protein function requires tools that allow its detection and/or purification. As generation of specific antibodies often is laborious and insufficient, protein tagging using epitopes that are recognized by commercially available antibodies and matrices appears more promising. Also, proper spatial and temporal expression of tagged proteins is required to prevent falsification of results. We developed a new series of binary Gateway cloning vectors named pAUL1-20 for C- and N-terminal in-frame fusion of proteins to four different tags: a single (i) HA epitope and (ii) Strep-tagIII, (iii) both epitopes combined to a double tag, and (iv) a triple tag consisting of the double tag extended by a Protein A tag possessing a 3C protease cleavage site. Expression can be driven by either the 35 S CaMV promoter or, for C-terminal fusions, promoters from genes encoding the chloroplast biogenesis factors HCF107, HCF136, or HCF173. Fusions of the four promoters to the GUS gene showed that endogenous promoter sequences are functional and drive expression more moderately and consistently throughout different transgenic lines when compared to the 35 S CaMV promoter. By testing complementation of mutations affected in chloroplast biogenesis factors HCF107 and HCF208, we found that the effect of different promoters and tags on protein function strongly depends on the protein itself. Single-step and tandem affinity purification of HCF208 via different tags confirmed the integrity of the cloned tags.  相似文献   

16.
In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide-glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG-tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.  相似文献   

17.
Farrell PJ  Behie LA  Iatrou K 《Proteins》2000,41(1):144-153
Production of recombinant proteins that are not secreted outside the producing cells usually requires purification steps that can result in significant yield reductions and loss of biological activity. Using insect cells as a model system to devise the means for secreting recombinant proteins that are not normally destined for secretion outside the producing cells, we initially examined the ability of an insect-specific signal peptide sequence to direct secretion of two intracellular proteins (the cytoplasmic enzyme chloramphenicol acetyl transferase [CAT] and the nuclear protein Bombyx mori chorion factor 1 [BmCF1]) expressed in transfected silkmoth cells. Although this signal sequence functioned efficiently as a chimera with normally secreted proteins, it failed to secrete CAT and BmCF1, suggesting that additional signals are required for passage of these polypeptides through the secretion pathway. For this reason, we also generated a secretion module consisting of the secreted protein juvenile hormone esterase (JHE), a spacer region containing a histidine tag and an endopeptidase cleavage site, to which coding sequences of choice can be cloned as C-terminal extensions. In C-terminal fusions with the CAT and BmCF1 open reading frames, the N-terminal JHE moiety was able to provide all the signals necessary for secretion of CAT and BmCF1 into the extracellular environment. The histidine tag present in the spacer region allowed purification of fusion proteins by metal affinity chromatography under nondenaturing conditions, and the enteropeptidase cleavage site was recognized and cleaved by the cognate protease causing the release of the intracellular proteins from the secretion module. We also show that another secreted protein, human granulocyte-macrophage colony stimulating factor (GM-CSF) can substitute for JHE in the secretion module and that these secretion modules can function in mammalian cells.  相似文献   

18.
A prerequisite for structural genomics and related projects is to standardize the process of gene overexpression and protein solubility screening to enable automation for higher throughput. We have tested a methodology to rapidly subclone a large number of human genes and screen these for expression and protein solubility in Escherichia coli. The methodology, which can be partly automated, was used to compare the effect of six different N-terminal fusion proteins and an N-terminal 6*His tag. As a realistic test set we selected 32 potentially interesting human proteins with unknown structures and sizes suitable for NMR studies. The genes were transferred from cDNA to expression vectors using subcloning by recombination. The subcloning yield was 100% for 27 (of 32) genes for which a PCR fragment of correct size could be obtained. Of these, 26 genes (96%) could be overexpressed at detectable levels and 23 (85%) are detected in the soluble fraction with at least one fusion tag. We find large differences in the effects of fusion protein or tag on expression and solubility. In short, four of seven fusions perform very well, and much better than the 6*His tag, but individual differences motivate the inclusion of several fusions in expression and solubility screening. We also conclude that our methodology and expression vectors can be used for screening of genes for structural studies, and that it should be possible to obtain a large fraction of all NMR-sized and nonmembrane human proteins as soluble fusion proteins in E. coli.  相似文献   

19.
Immobilization of biologically active proteins is of great importance to research and industry. Cellulose is an attractive matrix and cellulose-binding domain (CBD) an excellent affinity tag protein for the purification and immobilization of many of these proteins. We constructed two vectors to enable the cloning and expression of proteins fused to the N- or C-terminus of CBD. Their usefulness was demonstrated by fusing the heparin-degrading protein heparinase I to CBD (CBD-HepI and HepI-CBD). The fusion proteins were over-expressed in Escherichia coli under the control of a T7 promoter and found to accumulate in inclusion bodies. The inclusion bodies were recovered by centrifugation, the proteins were refolded and recovered on a cellulose column. The bifunctional fusion protein retained its abilities to bind to cellulose and degrade heparin. C-terminal fusion of heparinase I to CBD was somewhat superior to N-terminal fusion: Although specific activities in solution were comparable, the latter exhibited impaired binding capacity to cellulose. CBD-HepI-cellulose bioreactor was operated continuously and degraded heparin for over 40 h without any significant loss of activity. By varying the flow rate, the mean molecular weight of the heparin oligosaccharide produced could be controlled. The molecular weight distribution profiles, obtained from heparin depolymerization by free heparinase I, free CBD-HepI, and cellulose-immobilized CBD-HepI, were compared. The profiles obtained by free heparinase I and CBD-HepI were indistinguishable, however, immobilized CBD-HepI produced much lower molecular weight fragments at the same percentage of depolymerization. Thus, CBD can be used for the efficient production of bioreactors, combining purification and immobilization into essentially a single step.  相似文献   

20.
6×His tag is one of the most widely used affinity fusion tags that facilitates detection and purification of recombinant proteins. However, the location of this tag within a particular type of protein may influence the expression, solubility, and bioactivity of the protein, and the optimal location needs to be determined experimentally. To provide a tool for rapid generation of 6× His tags at the N- or C-terminus of any recombinant protein, we have constructed a pair of Escherichia coli expression vectors—pLIC-NHis and pLIC-CHis—based on the pET30a vector, for ligation-independent cloning (LIC). Construction of this new pair of LIC vectors was accomplished by replacement of the multiple cloning site of pET30a with two specifically designed LIC cloning sites. A target gene derived by PCR with a pair of predesigned primers can be inserted into the LIC site of pLIC-NHis for expression of recombinant proteins fused with the N-terminal sequence MHHHHHHG or into that of pLIC-CHis for expression of recombinant proteins with the C-terminal sequence THHHHHH. Successful expression of two normal mammalian prion proteins and five bacterial proteins in E. coli using this pair of LIC vectors reveals that these vectors are valuable tools for the production of recombinant His-tagged proteins in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号