首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rats fed a high-fat diet display blunted insulin-stimulated skeletal muscle glucose uptake. It is not clear whether this is due solely to a defect in glucose transport, or if glucose delivery and phosphorylation are also impaired. To determine this, rats were fed standard chow (control rats) or a high-fat diet (HF rats) for 4 wk. Experiments were then performed on conscious rats under basal conditions or during hyperinsulinemic euglycemic clamps. Rats received primed constant infusions of 3-O-methyl-[(3)H]glucose (3-O-MG) and [1-(14)C]mannitol. Total muscle glucose concentration and the steady-state ratio of intracellular to extracellular 3-O-MG concentration [which distributes based on the transsarcolemmal glucose gradient (TSGG)] were used to calculate glucose concentrations at the inner and outer sarcolemmal surfaces ([G](im) and [G](om), respectively) in soleus. Total muscle glucose was also measured in two fast-twitch muscles. Muscle glucose uptake was markedly decreased in HF rats. In control rats, hyperinsulinemia resulted in a decrease in soleus TSGG compared with basal, due to increased [G](im). In HF rats during hyperinsulinemia, [G](im) also exceeded zero. Hyperinsulinemia also decreased muscle glucose in HF rats, implicating impaired glucose delivery. In conclusion, defects in extracellular and intracellular components of muscle glucose uptake are of major functional significance in this model of insulin resistance.  相似文献   

2.
The activity and Km of glucose transport of rat adipocytes are quite variable in the basal state. This could be due to differing levels of highly saturable transport against a background of less saturable transport. Such heterogeneity could lead to differing conclusions as to the Km of basal cells compared to insulin-stimulated cells depending on the choice of substrate, the range of concentrations tested, and the rigor of data analysis. In the present work, we used a cell preparation which was stable and partially activated by constant agitation. We used a two-component model to fit the concentration dependence of D-glucose uptake. We defined two parallel pathways of glucose entry, a high-affinity/low-capacity pathway and a low-affinity/high-capacity pathway. Both pathways were stereospecific and were inhibited by cytochalasin B. The low-affinity pathway in basal cells had 97% of the total capacity (Vmax) with a high Km (greater than 50 mM). A second pathway had a very low Km (less than 1 mM) and only 3% of the total capacity, but contributed to 30-60% of glucose uptake at 8 mM glucose. In insulin-stimulated cells, a pathway with a Km of 4-5 mM dominated and contributed 85% of glucose transport. The low-affinity but not the very high affinity pathway persisted in stimulated cells, but its contribution was only 10-15% of transport at 8 mM glucose. These results suggest the presence of at least two functionally distinct transporters whose respective contributions can be characterized by nonlinear regression of data over a wide range of glucose concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The glucose transporter in the plasma membrane of rat skeletal muscle has been identified by two approaches. In one, the transporter was detected as the polypeptide that was differentially labeled by photolysis with [3H]cytochalasin B in the presence of l- and d-glucose. [3H]Cytochalasin B is a high-affinity ligand for the transporter that is displaced by d-glucose. In the other, the transporter was detected by means of its reaction with rabbit antibodies against the purified glucose transporter from human erythrocytes. By both procedures, the transporter was found to be a polypeptide with a mobility corresponding to a molecular weight of 45,000–50,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

4.
A G Douen  T Ramlal  G D Cartee  A Klip 《FEBS letters》1990,261(2):256-260
Insulin and acute exercise (45 min of treadmill run) increased glucose uptake into perfused rat hindlimbs 5-fold and 3.2-fold, respectively. Following exercise, insulin treatment resulted in a further increase in glucose uptake. The subcellular distribution of the muscle glucose transporters GLUT-1 and GLUT-4 was determined in plasma membranes and intracellular membranes. Neither exercise nor exercise----insulin treatment altered the distribution of GLUT-1 transporters in these membrane fractions. In contrast, exercise, insulin and exercise----insulin treatment caused comparable increases in GLUT-4 transporters in the plasma membrane. The results suggest that exercise might limit insulin-induced GLUT-4 recruitment and that following exercise, insulin may alter the intrinsic activity of plasma membrane glucose transporters.  相似文献   

5.
Kawanaka, Kentaro, Izumi Tabata, Shigeru Katsuta, andMitsuru Higuchi. Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training.J. Appl. Physiol. 83(6):2043-2047, 1997.After running training, which increased GLUT-4protein content in rat skeletal muscle by <40% compared with controlrats, the training effect on insulin-stimulated maximal glucosetransport (insulin responsiveness) in skeletal muscle was short lived(24 h). A recent study reported that GLUT-4 protein content in ratepitrochlearis muscle increased dramatically (~2-fold) after swimmingtraining (J.-M. Ren, C. F. Semenkovich, E. A. Gulve, J. Gao, andJ. O. Holloszy. J. Biol.Chem. 269, 14396-14401, 1994).Because GLUT-4 protein content is known to be closely related toskeletal muscle insulin responsiveness, we thought it possible that thetraining effect on insulin responsiveness may remain for >24 h afterswimming training if GLUT-4 protein content decreases gradually fromthe relatively high level and still remains higher than control levelfor >24 h after swimming training. Therefore, we examined thispossibility. Male Sprague-Dawley rats swam 2 h a day for 5 days with aweight equal to 2% of body mass. Approximately 18, 42, and 90 h aftercessation of training, GLUT-4 protein concentration and2-[1,2-3H]deoxy-D-glucosetransport in the presence of a maximally stimulating concentration ofinsulin (2 mU/ml) were examined by using incubated epitrochlearismuscle preparation. Swimming training increased GLUT-4 proteinconcentration and insulin responsiveness by 87 and 85%, respectively,relative to age-matched controls when examined 18 h after training.Forty-two hours after training, GLUT-4 protein concentration andinsulin responsiveness were still higher by 52 and 51%, respectively,in muscle from trained rats compared with control. GLUT-4 proteinconcentration and insulin responsiveness in trained muscle returned tosedentary control level within 90 h after training. We conclude that1) the change in insulinresponsiveness during detraining is directly related to muscle GLUT-4protein content, and 2)consequently, the greater the increase in GLUT-4 protein content thatis induced by training, the longer an effect on insulin responsivenesspersists after the training.

  相似文献   

6.
The cause of reduced insulin-stimulated glucose transport in skeletal muscle of diabetic rats was investigated. Basal and insulin-stimulated glucose uptake into hindquarter muscles of 7-day diabetic rats were 70% and 50% lower, respectively, than in nondiabetic controls. Subcellular fractionation of hindquarter muscles yielded total crude membranes, plasma membranes and intracellular membranes. The number of GLUT-4 glucose transporters was lower in crude membranes, plasma membranes and intracellular membranes, relative to non-diabetic rat muscles. These results were paralleled by reductions in D-glucose-protectable binding of cytochalasin B. Insulin caused a redistribution of GLUT-4 transporters from intracellular membranes to plasma membranes, in both control and diabetic rat muscles. This redistribution was also recorded using binding of cytochalasin B. The insulin-dependent decrement in glucose transporters in intracellular membranes was similar for both animal groups, but the gain and final amount of transporters in the plasma membrane were 50% lower in the diabetic group. The results suggest that insulin signalling and recruitment of GLUT-4 glucose transporters occur in diabetic rat muscle, and that the diminished insulin response may be due to fewer glucose transporters operating in the muscle plasma membrane.  相似文献   

7.
We examined the effect of insulin on fetal/neonatal rat skeletal muscle GLUT-1 and GLUT-4 concentrations and subcellular distribution by employing immunohistochemical analysis and subcellular fractionation followed by Western blot analysis. We observed that insulin did not alter total GLUT-1 or GLUT-4 concentrations or the GLUT-1 subcellular distribution in fetal/neonatal or adult skeletal muscle in 60 min. The basal and insulin-induced changes in subcellular distribution of GLUT-4 were different between the fetal/neonatal and adult skeletal muscle. Under basal conditions, sarcolemma-associated GLUT-4 was higher in the newborn compared with the adult, translating into a higher glucose transport. In contrast, insulin-induced translocation of GLUT-4 to the sarcolemma- and insulin-induced glucose transport was lower in the newborn compared with the adult. This age-related change results in enhanced basal glucose transport to fuel myocytic proliferation and differentiation while relatively curbing the insulin-dependent glucose transport in the newborn.  相似文献   

8.
The membrane-impermeant bis-mannose photolabel 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2- propylamine (ATB-BMPA) has been used to study the development of an intracellular pool of glucose transporters in 3T3-L1 cells. The subcellular distributions of the transporter isoforms GLUT1 and GLUT4 were determined by comparing the labeling obtained in cells in which the impermeant reagent only had access to the cell surface and the labeling obtained in digitonin-permeabilized cells. ATB-BMPA labeling showed that only GLUT1 was present in preconfluent fibroblasts and that most of the transporters were distributed to the cell surface. In preconfluent fibroblasts, the 2-deoxy-D-glucose transport activity was approximately 5 times higher than in confluent fibroblasts. ATB-BMPA labeling showed that the decrease in transport as cells reached confluence was associated with a decrease in the proportion of GLUT1 distributed to the cell surface. The sequestration of these transporters was associated with the development of an insulin-responsive transport activity which increased by approximately 2.5-fold compared with unstimulated confluent cells. ATB-BMPA labeling showed that insulin stimulation resulted in an approximately 2-fold increase in surface GLUT1 so that about one-half of the available transporters became recruited to the cell surface. Measurements of the changes in the distribution of both GLUT1 and GLUT4 throughout the differentiation of confluent fibroblasts into adipocytes showed that both transporters were sequestered in parallel. Basal levels of transport and photolabeling remained low throughout the differentiation period when the total pool of transporters (GLUT1 plus GLUT4) was increased by approximately 5-fold. These results suggest that the sequestration process was present before new transporters were synthesized. Thus, the sequestration mechanism develops in confluent growth-arrested fibroblasts although the capacity to sequester additional transporters may increase as differentiation proceeds.  相似文献   

9.
10.
T J Wheeler  M A Hauck 《Life sciences》1987,40(24):2309-2316
As a step in the purification and characterization of the glucose transporter from rat skeletal muscle, we have reconstituted glucose transport activity in liposomes. Plasma membranes were prepared from skeletal muscle which display D-glucose reversible binding of cytochalasin B (10 pmol sites/mg protein; KD = 0.3 microM). Older rats gave a slightly lower specific activity and much lower yield of sites per g muscle than young rats. Glucose transport activity was reconstituted into liposomes by the freeze-thaw procedure using either plasma membranes directly or cholate-extracted membrane proteins; the latter gave a 50% higher specific activity. The reconstituted transport activity was stereospecific, saturable, and inhibited by cytochalasin B, phloretin, and mercuric chloride. The optimum cholate concentration for extraction and reconstitution of transport activity was about 1.5%, and the highest specific activity of reconstituted transport was seen only at low ratios of protein to lipid in the reconstitution. Chromatography on agarose lentil lectin and agarose ethanethiol doubled both the specific activity of reconstituted transport and the fraction of glucose uptake which was stereospecific. In all of these respects the results were similar to our results with the bovine heart transporter (T. J. Wheeler and M. A. Hauck, Biochim. Biophys. Acta 818, 171-182 (1985)). Our findings suggest that further purification procedures developed for the heart transporter may be applicable to the skeletal muscle transporter as well.  相似文献   

11.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

12.
This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.  相似文献   

13.
BACKGROUND: In hyperthyroidism, tissue glucose disposal is increased to adapt to high energy demand. Our aim was to examine the glucose transporter isoforms involved in this process and their regulation through insulin in monocytes from subjects with hyperthyroidism. METHODS: Blood (20 ml) was withdrawn from 12 healthy and 12 hyperthyroid subjects. The abundance of glucose transporter isoforms (GLUT) on the monocyte surface membrane was determined in the absence and presence of insulin (10-100 mU/l) using flow cytometry. Anti-CD14-PE monoclonal antibody was used for monocyte gating. GLUT isoforms were determined after staining the cells with specific antisera to GLUT1, GLUT3 and GLUT4. RESULTS: Hyperthyroidism increased basal monocyte-surface GLUT1, GLUT3 and GLUT4 transporters. In these cells, insulin had a marginal effect on GLUT4 translocation (25 %, p < 0.02) and a more significant effect on GLUT3 translocation (45 %, p < 0.001) on plasma membrane. CONCLUSIONS: In the hyperthyroid state, (1) basal abundance of GLUT1, GLUT3 and GLUT4 transporters on the cell surface is increased; (2) insulin mainly increases the recruitment of GLUT3 and, to a lesser extent, GLUT4 glucose transporters on the plasma membrane. These findings may provide a mechanism to explain the increment of glucose disposal in peripheral tissues in hyperthyroidism.  相似文献   

14.
In vivo calorie restriction [CR; consuming 60% of ad libitum (AL) intake] induces elevated insulin-stimulated glucose transport (GT) in skeletal muscle. The mechanisms triggering this adaptation are unknown. The aim of this study was to determine whether physiological reductions in extracellular glucose and/or insulin, similar to those found with in vivo CR, were sufficient to elevate GT in isolated muscles. Epitrochlearis muscles dissected from rats were incubated for 24 h in media with glucose (8 mM) and insulin (80 microU/ml) at levels similar to plasma values of AL-fed rats and compared with muscles incubated with glucose (5.5 mM) and/or insulin (20 microU/ml) at levels similar to plasma values of CR rats. Muscles incubated with CR levels of glucose and insulin for 24 h had a subsequently greater (P < 0.005) GT with 80 microU/ml insulin and 8 mM [(3)H]-3-O-methylglucose but unchanged GT without insulin. Reducing only glucose or insulin for 24 h or both glucose and insulin for 6 h did not induce altered GT. Increased GT after 24-h incubation with CR levels of glucose and insulin was not attributable to increased insulin receptor tyrosine phosphorylation, Akt serine phosphorylation, or Akt substrate of 160 kDa phosphorylation. Nor did 24-h incubation with CR levels of glucose and insulin alter the abundance of insulin receptor, insulin receptor substrate-1, GLUT1, or GLUT4 proteins. These results provide the proof of principle that reductions in extracellular glucose and insulin, similar to in vivo CR, are sufficient to induce an increase in insulin-stimulated glucose transport comparable to the increase found with in vivo CR.  相似文献   

15.
Incubation of rat soleus muscles with 50 microM sphingosine or 50 microM sphinganine augmented basal 2-deoxy-D-glucose (2DG) transport 32%, but reduced the response to 0.1 and 1.0 mU insulin/ml by 17 and 27%, respectively. When the muscles were incubated with 50 microM phytosphingosine, a 63-93% increase in basal 2DG transport was observed. However, this treatment had no effect on insulin-stimulated 2DG transport. The phytosphingosine-induced increase in basal 2-DG transport was inhibited 93 and 98% with 35 and 70 microM cytochalasin B, respectively, suggesting that it is mediated by glucose transporters. Cellular accumulation of L-glucose, which is not mediated by glucose transporters, was not affected by phytosphingosine. It is concluded that (a) both sphingosine and sphinganine increase basal 2DG transport in muscle but diminish insulin-stimulated transport, and (b) phytosphingosine stimulates basal 2DG transport in muscle by a mechanism involving glucose transporters.  相似文献   

16.
The effect of insulin-like growth factor I (IGF-I) on insulin-stimulated glucose uptake was studied in adipose and muscle tissues of hypophysectomized female rats. IGF-I was given as a subcutaneous infusion via osmotic minipumps for 6 or 20 days. All hypophysectomized rats received L-thyroxine and cortisol replacement therapy. IGF-I treatment increased body weight gain but had no effect on serum glucose or free fatty acid levels. Serum insulin and C-peptide concentrations decreased. Basal and insulin-stimulated glucose incorporation into lipids was reduced in adipose tissue segments and isolated adipocytes from the IGF-I-treated rats. In contrast, insulin treatment of hypophysectomized rats for 7 days increased basal and insulin-stimulated glucose incorporation into lipids in isolated adipocytes. Pretreatment of isolated adipocytes in vitro with IGF-I increased basal and insulin-stimulated glucose incorporation into lipids. These results indicate that the effect of IGF-I on lipogenesis in adipose tissue is not direct but via decreased serum insulin levels, which reduce the capacity of adipocytes to metabolize glucose. Isoproterenol-stimulated lipolysis, but not basal lipolysis, was enhanced in adipocytes from IGF-I-treated animals. In the soleus muscle, the glycogen content and insulin-stimulated glucose incorporation into glycogen were increased in IGF-I-treated rats. In summary, IGF-I has opposite effects on glucose uptake in adipose tissue and skeletal muscle, findings which at least partly explain previous reports of reduced body fat mass, increased body cell mass, and increased insulin responsiveness after IGF-I treatment.  相似文献   

17.
18.
The subcellular distribution of glucose transporters in rat hepatocytes and HepG2 cells was studied in the absence and in the presence of insulin. Glucose transporters were quantitated by measuring glucose-sensitive cytochalasin B binding and by protein immunoblotting using isoform-specific antibodies. Plasma membrane contamination into subcellular fractions was assessed by measuring distribution of 5'-nucleotidase and cell surface carbohydrate label. In hepatocytes, GLUT-2 occurred in a low-density microsomal (LDM) fraction at a significant concentration, and as much as 15% of cellular GLUT-2 was found intracellularly that cannot be accounted for by plasma membrane contamination. In HepG2 cells which express GLUT-1 and GLUT-2, the two isoforms showed distinct subcellular distribution patterns: GLUT-2 was highly concentrated in LDM while very little GLUT-1 was found in this fraction, indicating that a large portion of GLUT-2 occurs in intracellular organelles. Insulin treatment did not change the subcellular distribution patterns of glucose transporters in both cell types. Our results suggest that rat hepatocytes and HepG2 cells possess an intracellular storage pool for GLUT-2, but lack the insulin-responsive glucose transporter translocation mechanism.  相似文献   

19.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

20.
The aim of this investigation was to evaluate if chronic leptin administration corrects high fat diet-induced skeletal muscle insulin resistance, in part, by enhancing rates of glucose disposal and if the improvements are accounted for by alterations in components of the insulin-signaling cascade. Sprague-Dawley rats consumed normal (CON) or high fat diets for three months. After the dietary lead in, the high fat diet group was further subdivided into high fat (HF) and high fat, leptin treated (HF-LEP) animals. HF-LEP animals were injected twice daily with leptin (5 mg/100 g body weight) for 10 days, while the CON and HF animals were injected with vehicle. Following the treatment periods, all animals were prepared for and subjected to hind limb perfusion. The high fat diet decreased rates of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis in the red gastrocnemius (RG), but did not affect glycogen synthase activity, rates of glucose oxidation or nonoxidative disposal of glucose. Of interest, IRS-1-associated PI3-K activity and total GLUT4 protein concentration were reduced in the RG of the high fat-fed animals. Leptin treatment increased rates of insulin-stimulated glucose uptake and glucose oxidation, and normalized rates of glycogen synthesis. Leptin appeared to mediate these effects by normalizing insulin-stimulated PI3-K activation and GLUT4 protein concentration in the RG. Collectively, these data suggest that chronic leptin treatment reverses the effects of a high fat diet thereby allowing the insulin signaling cascade and glucose transport effector system to be fully activated which in turn affects the amount of glucose that is transported across the plasma membrane and made available for glycogen synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号