首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The effects of γ-aminobutyric acid (GABA) on the spontaneous release of endogenous glutamic acid (Glu) or aspartic acid (Asp) and the effects of Glu on the release of endogenous GABA or [3H]GABA were studied in superfused rat cerebral cortex synaptosomes. GABA increased the outflow of Glu (EC5017.2 μM) and Asp (EC50 18.4 μM). GABA was not antagonized by bicuculline or picrotoxin. Neither muscimol nor (-)-baclofen mimicked GABA. The effects of GABA were prevented by GABA uptake inhibitors and were Na+ dependent. Glu enhanced the release of [3H]GABA (EC50 11.5 μM) from cortical synaptosomes. Glu was not mimicked by the glutamate receptor agonists N-methyl-d -aspartic, kainic, or quisqualic acid. The Glu effect was decreased by the Glu uptake inhibitor D-threo-hydroxyaspartic acid (THA) and it was Na+ sensitive. Similarly to Glu, D-Asp increased [3H]GABA release (EC50 9.9 μM), an effect blocked by THA. Glu also increased the release of endogenous GABA from cortex synaptosomes. In this case the effect was in part blocked by the (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 6-cyano-7-nitroquinoxaiine-2, 3-dione, whereas the 6-cyano-7-nitroquinoxaline- 2, 3-dione-insensitive portion of the effect was prevented by THA. GABA increased the [3H]D-Asp outflow (EC50 13.7 μM) from hippocampal synaptosomes in a muscimol-, (-)- baclofen-, bicuculline-, and picrotoxin-insensitive manner. The GABA effect was abolished by blocking GABA uptake and was Na+ dependent. Glu increased the release of [3H]- GABA from hippocampal synaptosomes (EC50 7.1 μM) in an N-methyl-d -aspartic acid-, kainic acid-, or quisqualic acid-insensitive way. The effect of Glu was prevented by THA and was Na+ dependent. As in the cortex, the effect of Glu was mimicked by D-Asp in a THA-sensitive manner. It is proposed that high-affinity GABA or Glu heterocarriers are sited respectively on glutamatergic or GA- BAergic nerve terminals in rat cerebral cortex and hippocampus. The uptake of GABA may modulate Glu and Asp release, whereas the uptake of Glu may modulate the release of GABA. The existence of these heterocarriers is in keeping with the reported colocalization of GABA and Glu in some cortical and hippocampal neurons. Preliminary data suggest that these mechanisms may also be present in rat cerebellum and spinal cord.  相似文献   

2.
Synaptosomes prepared from frozen postmortem human brain accumulated the neurotransmitter gamma-aminobutyric acid (GABA) and the conformationally restricted GABA analogue cis-3-aminocyclohexanecarboxylic acid (ACHC) by a sodium-dependent, temperature-sensitive, high-affinity transport process into an osmotically sensitive compartment. This transport process could be inhibited by GABA analogues (ACHC, 2,4-diaminobutyric acid, nipecotic acid, arecaidine, guvacine) that have been shown in studies on other species to be relatively selective for neuronal rather than glial uptake systems, whereas the glial uptake inhibitor beta-alanine was ineffective. Synaptosomes prepared from frozen post-mortem human medulla and spinal cord, but not cerebral cortex, took up the neurotransmitter glycine by a sodium-dependent high-affinity transport process. The kinetic parameters for the high-affinity uptake of GABA, ACHC, and glycine were Km = 10 +/- 3, 49 +/- 19, and 35 +/- 19 microM; and Vmax = 98 +/- 15, 84 +/- 25, and 5.5 +/- 2.5 nmol/min/100 mg protein, respectively. These results demonstrate the feasibility of using human CNS preparations for studying GABA and glycine uptake, and suggest that such studies may be useful neurochemical markers for transmitter-specific presynaptic terminals in health and disease.  相似文献   

3.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

4.
Abstract: As γ-aminobutyric acid (GABA) was first discovered as the free acid in the mammalian central nervous system, it has been assumed that GABA is generally to be found in significant amounts only in the brain, in spite of reports of its presence in a number of non-neuronal tissues. In this study, GABA was detected amongst the free amino acids in most rat tissues that were examined. The highest concentration outside the brain was in the ovary (0.59 μmol/g fresh tissue). It is concluded that the synthesis of the GABA is intragonadal and probably of metabolic importance.  相似文献   

5.
A large amount of [3H]GABA was bound to crude synaptic membrane fractions of rat. by sodium-independent process in a medium that contained 100 μM [3H]GABA used for assaying GABA uptake site. This [3H]-GABA binding was different from receptor binding of GABA. It was confirmed that this sodium-independent [2H]GABA binding scarcely occurred in the presence of a physiological concentration of sodium chloride, and that sodium-independent GABA binding had a negligible influence on sodium-dependent GABA binding.  相似文献   

6.
Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres absolute on [3H]glycine and [3H]gamma-aminobutyric acid ([3H]GABA) release. Pressure was found to exert a significant suppressive effect on the depolarization-induced calcium-dependent release of glycine and GABA by these spinal cord presynaptic nerve terminals. This study suggests that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure.  相似文献   

7.
Previous studies have identified an effect of estrogen administration on the number of central GABAergic binding sites of rat. We have further characterized this effect by performing a series of experiments in vitro where we analyzed the changes of gamma-aminobutyric acid (GABA) binding in slices of nervous tissue incubated in a physiological medium in presence of estradiol. The tissues were dissected from ovariectomized rats. In such a system, estrogen augmented the amount of [3H]muscimol binding within 3 h of incubation. The effect was dose-dependent and could be blocked by the addition of the anti-estrogen tamoxifen. The increase in [3H]muscimol binding could not be observed by addition of estradiol to broken membranes or by incubation of the slices with steroids deprived of estrogenic activity. Furthermore, the estrogen-induced increase of GABA binding sites could be prevented by addition of cycloheximide and alpha-amanitin in the incubation medium. Our data indicate that the estrogen may increase the number of GABA binding sites by direct interaction with the GABA receptor gene or genes involved in the metabolism of GABA receptor.  相似文献   

8.
Abstract: Following incubation with [14C]y-aminobutyric acid (GABA) or [3H]dopamine, slices of rat striatum were superfused with media containing 36 mM K+ or ethylenediamine (EDA), 1 or 5 mM. Both K+ and EDA induced a release of [14C]GABA, the K+-induced release being largely Ca2+-dependent, while the EDA-induced release was not. Whereas K+ also evoked a Ca2+-dependent release of [3H]dopamine, EDA evoked no release of dopamine. EDA may therefore have potential as a specific GABA releasing agent.  相似文献   

9.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system.  相似文献   

10.
Neuronal growth cones isolated in bulk from neonatal rat forebrain have uptake and K(+)-stimulated release mechanisms for gamma-aminobutyric acid (GABA). Up to and including postnatal day 5, the K(+)-stimulated release of [3H]GABA and endogenous GABA is Ca2+ independent. At these ages, isolated growth cones neither contain synaptic vesicles nor stain for synaptic vesicle antigens. Here we examined the possibility that the release mechanism underlying Ca2(+)-independent GABA release from isolated growth cones is by reversal of the plasma membrane GABA transporter. The effects of two GABA transporter inhibitors, nipecotic acid and an analogue of nipecotic acid, SKF 89976-A, on K(+)-stimulated release of [3H]GABA from superfused growth cones were examined. Nipecotic acid both stimulated basal [3H]GABA release and enhanced K(+)-stimulated release of [3H]GABA, which indicates that this agent can stimulate GABA release and is, therefore, not a useful inhibitor with which to test the role of the GABA transporter in K(+)-stimulated GABA release from growth cones. In contrast, SKF 89976-A profoundly depressed both basal and K(+)-stimulated [3H]GABA release. This occurred at similar concentrations at which uptake was blocked. These observations provide evidence for a major role of the GABA transporter in GABA release from neuronal growth cones.  相似文献   

11.
Abstract: This study attempts to determine if γ-aminobutyric acid (GABA) may be a transmitter of cochlear nerve fibers projecting from the cochlea to the cochlear nucleus, and of centrifugal fibers projecting to the cochlear nucleus via the trapezoid body and the acoustic striae of the medulla. The uptake and the electrically evoked release of exogenous [14C]GABA were measured, in vitro, in the three major subdivisions of the guinea pig cochlear nucleus: the anteroventral, posteroventral, and dorsal cochlear nuclei. These activities were compared using unlesioned animals, animals with bilateral cochlear ablations, and animals whose trapezoid body and acoustic striae were interrupted on the right side of the medulla. Subdivisions from unlesioned animals took up [14C]GABA, achieving concentrations in the tissues that were 11–19 times that in the medium. Electrical stimulation evoked a Ca2+-dependent release of [14C]GABA from each subdivision. Bilateral cochlear ablation, which presumably destroyed the cochlear nerve fibers, had no effect on [14C]GABA uptake and release. Section of the trapezoid body and the acoustic striae on the right side of the medulla typically severed all known connections of the right posteroventral and dorsal cochlear nuclei with the rest of the brain, but left intact many connections involved with the right anteroventral cochlear nucleus. This lesion partially depressed [14C]GABA uptake and release in the right posteroventral and dorsal cochlear nuclei, but not in the right anteroventral cochlear nucleus. These findings suggest that one or more of the centrifugal tracts projecting to the cochlear nucleus may be GABAergic, 88% or more of the cochlear nerve fibers probably are not GABAergic, and some neurons of the cochlear nucleus are probably GABAergic.  相似文献   

12.
Uptake of γ-Aminobutyric Acid by Brain Tissue Preparations: A Reevaluation   总被引:1,自引:3,他引:1  
The kinetic constants Km and Vmax for the uptake of gamma-aminobutyric acid (GABA) by various preparations from rat cerebral cortex were determined by means of Eadie-Hofstee plots and computer analysis. The Km values were much greater in 0.1-mm slices than in synaptosomal preparations, and the Km value increased further with the thickness of the slices. The apparent high Km values in slices were probably due to depletion of the GABA concentration in the extracellular fluid as the exogenous GABA ran the gauntlet of competing uptake sites on its way to sites deep within the slice, thereby bringing about a requirement for higher GABA concentrations in the incubation medium in order to maintain the internal GABA levels at the "Km level." Evidence was obtained for three GABA uptake systems with Km values (in synaptosomes) of 1.1 microM, 43 microM, and 3.9 mM, respectively. In contrast, only two uptake systems for D-aspartate were detected, with Km values of 1.8 microM and 1.8 mM, respectively. The implications of the findings in the study with respect to previous data in the literature are discussed.  相似文献   

13.
Abstract: γ-Aminobutyric acid (GABA) was found to induce the release of ascorbic acid from rat striatal homogenates and minces. This release was studied with the use of a rapid supervision system with an on-line amperometric detector that monitors for the presence of easily oxidized substances (i.e., ascorbate, 3,4-dihydroxyphenylethylamine). The release was found to be calcium-independent and depolarization-dependent. This releasable pool of ascorbate could be replenished through nonstereospecific uptake. The releasing action of GABA was mimicked by the GABA agonist, muscimol, and was completely inhibited by the GABA antagonist, picrotoxin. The structural analogues of GABA, β-alanine and γ-hydroxybutyric acid, had no effect. These data indicate that ascorbate release is GABA-receptor mediated and syn-aptically localized.  相似文献   

14.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   

15.
Bulk-isolated astrocytes from rats with early hepatogenic encephalopathy (HE) induced with thioacetamide responded to the increase of potassium in the incubation medium from 5 mM to 75 mM with a markedly enhanced release of previously taken up [14C]gamma-aminobutyric acid ([14C]GABA). The process was not affected by omission of calcium and/or addition of EGTA to the incubation medium. Only a slight stimulation of GABA release by high potassium was observed in astrocytes from control rats. In contrast, histamine and histidine were vigorously released from control astrocytes in high-potassium medium, and their release was not enhanced by HE, indicating that the observed phenomenon is specific for GABA.  相似文献   

16.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

17.
[3H]GABA binding to crude synaptic membranes of rat brain was studied in an attempt to identify GABA binding to its synaptic receptor in the presence of Na+. Membrane vesicles prepared from crude synaptic membrane fractions were useful as a tool to differentiate synaptic GABA receptors from GABA uptake sites. The crude synaptic membranes treated with Triton X-100 [membranes (TX)] involved two classes of GABA binding sites (KD = 38.7 and 78.0 nM) in the absence of Na+, but the high-affinity sites disappeared in the presence of Na+ and a single class of GABA binding sites (KD = 75.0 nM) was detected. The failure to detect an active uptake of [3H]GABA into the vesicles prepared from membranes (TX) suggests that the [3H]GABA binding in the presence of Na+ was related to synaptic GABA receptors. It is probable that Na+ could mask the presence of the high-affinity class of GABA receptor.  相似文献   

18.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

19.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development.  相似文献   

20.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号