首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spleen cells were cultured with high or low epitope TNP-polyacrylamide beads (TNP-PAB) in order to investigate the effect of epitope density on the requirements for T cell help and surface IgD on responding B cells. The response to low epitope density TNP-PAB was abolished by treatment with anti-Thy-1.2 and complement, whereas approximately 50% of the response to high epitope density TNP-PAB was retained after similar treatment. Thus, an increase in epitope density resulted in a decreased requirement for T cell help. An increase in epitope density was also associated with a decreased requirement for interaction of antigen and surface IgD as determined by "blocking" studies with anti-delta; further, the majority of the T-independent portion of this response was not blocked by anti-delta antibodies. This finding indicate that the T-independent portion of the anti-TNP response does not require interaction of antigen with surface IgD on B cells. These results are discussed in terms of differential cross-linking of IgM and IgD receptors on B cells by multivalent antigens.  相似文献   

2.
Various workers in their studies of the binding of haptens to IgM have observed that at low hapten concentration IgM has an apparent valence of five or near five, while at high hapten concentration IgM has a valence of ten. A possible explanation for this is that there is an interaction between binding sites on the same F(ab')2 region of the IgM molecule. In this paper the theory for such an interaction is presented and an expression for the apparent valence is derived. It is shown that the apparent valence depends on both the interaction between binding sites on the IgM molecule and on the width of the affinity distribution which characterizes the antiserum. A broad affinity distribution can give an apparent valence of five even when there is no interaction between sites, i.e., even when the ten binding sites on the IgM molecule are identical and independent. The general properties of a Scatchard plot are also discussed. When there is no interaction between sites it is shown that the average affinity and the variance of the affinity distribution can be obtained from a Scatchard plot. To illustrate the theory, an antiserum with affinities characterized by a normal distribution is considered and a simple method is presented for determining alpha, the parameter which measures the width of the normal distribution.  相似文献   

3.
The potential for ligand-initiated signal transduction through B cell membrane IgM is assessed in terms of ligand concentration, binding site valency, and binding site affinity for membrane Ig. Estimates of the physicochemical requirements for achieving G0* enhancement of class II MHC expression, G1 entry, and S phase entry in human B cells were made by comparing the stimulatory effects of three affinity-diverse anti-Cmu2 mAb when in bivalent (unconjugated) form, or as mAb-dextran conjugates with low binding site valency (oligovalent ligands) or high binding site valency (multivalent ligands). An increase in binding site number (and concomitant molecular mass) caused a profound reduction in both the minimal concentration and affinity requisites for B cell activation. The enhancing effect of increased binding site valency was most evident for the signaling of those most distal stages in B cell activation, i.e., G1 and S phase, which were difficult to induce with bivalent ligands. The results suggest that highly multimeric TI-2 Ag may be good immunogens because they are able to elicit a full activation response not only from infrequent high affinity B cells, but also from a substantial proportion of the many lower affinity Ag-specific B cells in virgin B cell populations. Interestingly, the activation of B cells by ligands with binding sites of high intrinsic affinity (Ka = 5 x 10(8) M-1) was less influenced by increases in binding site valency than was B cell activation by ligands with intermediate binding site affinity (Ka = 2 x 10(7) M-1). This suggests that the minimal epitope valency requirement for T cell-independent B cell activation by mIg cross-linking Ag may be dependent on the intrinsic affinity with which membrane Ig molecules on a given B cell interact with the redundantly expressed epitopes.  相似文献   

4.
Over the past decade, immunotoxins (IT) composed of mAb covalently coupled to toxins or their subunits have been developed for the treatment of malignancies and autoimmune diseases. Despite specific binding to target cells, not every mAb makes a therapeutically potent ricin A chain-containing IT (IT-A). A number of variables influence the potency of a mAb as an IT-A, including the affinity of the mAb, the nature and density of the cell surface Ag, and the type of target cell used. The present report investigates the influence of the epitope specificity of a mAb on the effectiveness of that mAb as an IT-A. Seven mAb directed against different regions of the mouse delta H chain of surface IgD, were conjugated to deglycosylated ricin A chain, and tested for their ability to kill murine B cells. The panel of IT-A had similar A chain activities and similar binding avidities. However, the mAb directed against epitopes in the Fc portion of surface IgD made more effective IT-A than those directed against epitopes in the Fd region. Overall, the anti-Fc-A were approximately 60- to 150-fold more toxic than the anti-Fd-A. Taken together with previous studies, these findings suggest that the epitope on a target Ag recognized by a given mAb is an important variable in determining the potency of a mAb as an IT-A.  相似文献   

5.
The investigation of [3H] PCP and [3H] TCP binding properties to rat cerebrum and cerebellum resulted in the demonstration of multiple binding sites for the two drugs. In the two tissue preparations PCP had a lower affinity than TCP. In membranes from the cerebrum an equal number of high affinity binding sites were present for [3H] PCP and [3H] TCP. However, low affinity binding sites were two times more numerous for [3H] PCP than for [3H] TCP. In the cerebellum, the number of high and low affinity sites labeled by the two radioligands was identical, but the number of high affinity sites was about 7 fold lower than in the cerebrum. Taken together these results may indicate that in the cerebrum [3H] PCP labels other sites than NMDA/PCP receptor(s), maybe sigma receptors and/or the dopamine uptake complex. In human cerebral cortex samples [3H] TCP also bound to two different sites. The number of high and low affinity sites were 12 and 3 times, respectively, less abundant than in the rat cerebrum. Low affinity sites were of higher affinity (5 times) than corresponding sites in the rat brain. In the human cerebellum [3H] TCP binding parameters were identical to those measured in the same region in the rat.  相似文献   

6.
It has been previously demonstrated that maley-lated-BSA (maleyl-albumin) induces functional activation in murine peritoneal macrophages. Furthermore, maleyl-albumin has been shown to interact with two distinct sites on human monocytes; one site is the scavenger receptor, a 260-kDa oligomeric protein which recognizes modified forms of low density lipoprotein (LDL), and the second is a lower affinity site which has yet to be structurally characterized. In the present study, we wished to quantitatively assess the number and character of maleyl-albumin-binding sites on murine peritoneal macrophages and to determine which site or sites are involved in signaling the macrophage to undergo extensive functional development. Binding studies. demonstrate at least two distinct receptors for maleyl-albumin on murine peritoneal macrophages. Scatchard analyses of the binding isotherms reveal two sites characterized by dissociation constants (Kd) of 17.6 nM and 4.9 microM and maximal binding of 1.2 x 10(5) and 1 x 10(6) sites/cell, respectively. The contribution of the scavenger receptor, determined by binding analyses of malondialdehyde-LDL, is described by two sites with Kd of 39.4 pM and 9.6 nM, and maximal binding of 2.7 x 10(3) and 1.9 x 10(4) sites/cell, respectively. Maleyl-albumin blocks binding of malondialdehyde-LDL, whereas modified LDL fails to inhibit binding of maleyl-albumin. Maleyl-albumin, at concentrations producing lower affinity binding, stimulates tumor cytolysis, expression of mRNA encoding TNF, and suppression of INF-gamma-induced expression of Ia Ag. Malondialdehyde-LDL fails to elicit these responses. We conclude that macrophage activation produced by maleyl-albumin is mediated by interaction with the low affinity, high capacity binding site for maleyl-albumin rather than the scavenger receptor.  相似文献   

7.
A novel surface protein of the bacterial species Moraxella catarrhalis that displays a high affinity for IgD (MID) was solubilized in Empigen and isolated by ion exchange chromatography and gel filtration. The apparent molecular mass of monomeric MID was estimated to approximately 200 kDa by SDS-PAGE. The mid gene was cloned and expressed in Escherichia coli. The complete mid nucleotide gene sequence was determined, and the deduced amino acid sequence consists of 2123 residues. The sequence of MID has no similarity to other Ig-binding proteins and differs from all previously described outer membrane proteins of M. catarrhalis. MID was found to exhibit unique Ig-binding properties. Thus, in ELISA, dot blots, and Western blots, MID bound two purified IgD myeloma proteins, four IgD myeloma sera, and finally one IgD standard serum. No binding of MID was detected to IgG, IgM, IgA, or IgE myeloma proteins. MID also bound to the surface-expressed B cell receptor IgD, but not to other membrane molecules on human PBLs. This novel Ig-binding reagent promises to be of theoretical and practical interest in immunological research.  相似文献   

8.
Two classes of immunoglobulin, IgM and IgD, are present as antigen receptors on the surface of mature B lymphocytes. We show here that IgD molecules are noncovalently associated in the B cell membrane with a heterodimer consisting of two proteins of 35 kd (IgD-alpha) and 39 kd (Ig-beta), respectively. The two novel proteins are not found in the IgD-expressing myeloma J558L delta m, which fails to bring IgD antigen receptor onto the cell surface. In a surface IgD positive variant line of this myeloma, however, membrane-bound IgD molecules are associated with the heterodimer, suggesting that the formation of an antigen receptor complex is required for surface IgD expression. We further demonstrate that the IgD-associated heterodimer differs partly from that of the IgM antigen receptor and that its binding to the heavy chain only requires the presence of the last constant domain and the transmembrane part of the delta m chain.  相似文献   

9.
High and low affinity binding sites for tetrodotoxin have been found in rat skeletal muscle cells in vitro using a radiolabeled tetrodotoxin derivative and 22Na+ flux studies. High affinity binding sites for tetrodotoxin (KD(tetrodotoxin) = 1.6 nM) cannot be detected at the myoblast stage. They appear and increase in density as myoblasts fuse into myotubes to reach a maximum binding capacity of 50 fmol/mg of proteins. Na+ channel structures with a high affinity for tetrodotoxin cannot be activated by neurotoxins specific for the Na+ channel such as veratridine and sea anemone toxinII. They are not expressed in the action potential. Na+ channels with a low affinity for tetrodotoxin (IC50(tetrodotoxin) = 1 microM) are functional since they can be activated by veratridine and sea anemone toxinII. They are already expressed in myoblasts and their density is not modified during the fusion of myoblasts into myotubes; they remain functional throughout the differentiation process. It is suggested that neuronal factors are not required for the synthesis of structures with high affinity binding sites for tetrodotoxin in the rat muscle and that they are only involved for the maturation of these structures from a nonfunctional to a functional form.  相似文献   

10.
We examine the etiological basis of hierarchical immunodominance of B cell epitopes on a multideterminant Ag. A model T-dependent immunogen, containing a single immunodominant B cell epitope, was used. The primary IgM response to this peptide included Abs directed against diverse determinants presented by the peptide. Interestingly, affinity of individual monomeric IgM Abs segregated around epitope recognized and was independent of their clonal origins. Furthermore, affinity of Abs directed against the immunodominant epitope were markedly higher than that of the alternate specificities. These studies suggested that the affinity of an epitope-specific primary response, and variations therein, may be determined by the chemical composition of epitope. This inference was supported by thermodynamic analyses of monomer IgM binding to Ag, which revealed that this interaction occurs at the expense of unfavorable entropy changes. Permissible binding required compensation by net enthalpic changes. Finally, the correlation between chemical composition of an epitope, the resultant affinity of the early primary humoral response, and its eventual influence on relative immunogenicity could be experimentally verified. This was achieved by examining the effect of various amino-terminal substitutions on immunogenicity of a, hitherto cryptic, amino-terminal determinant. Such experiments permitted delineation of a hierarchy of individual amino acid residues based on their influence; which correlated well with calculated Gibbs-free energy changes that individual residue side chains were expected to contribute in a binding interaction. Thus, maturation of a T-dependent humoral response is initiated by a step that is under thermodynamic control.  相似文献   

11.
Both high and low affinity receptors for nerve growth factor (NGF) have been described, but only the former appear to mediate NGF actions and uptake. To specifically characterize the molecular identity of the high affinity site and to compare it with the low affinity site, the water-soluble carbodiimide EDC was used to cross-link 125I-NGF to NGF receptors on: rat PC12 cells, PC12nnr5 cells (PC12 mutants that have only low affinity NGF binding), SH-SY5Y human neuroblastoma cells (which have only high affinity binding sites), and cultured rat sympathetic ganglion cells. A variety of criteria were used to distinguish the two classes of affinity-labeled receptors: competition with unlabeled NGF, dissociation rate, and selective solubilization by 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that cross-linking generated only a single Mr approximately 103,000 125I-NGF affinity-labeled species which represents both the low and high affinity forms of the receptor. The 125I-NGF X receptor complexes formed with both affinity classes of the receptor were quantitatively immunoprecipitated by the monoclonal anti-NGF-receptor antibody 192-IgG and both showed identical shifts in mobility when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. These findings indicate that both high and low affinity NGF receptors possess apparently identical NGF-binding moieties. The differences between the kinetic and functional properties of the two receptor types may therefore result from their interactions with other membrane components or with cytoplasmic proteins.  相似文献   

12.
The properties of interaction of both tetrodotoxin (TTX) and tritiated ethylenediamine tetrodotoxin [3H] en-TTX) were studied in rat heart membranes at different stages of development and in cultured cells. Studies by electrophysiology and by 22Na+ flux measurements on cardiac cultured cells indicate that the functional form of the Na+ channel is of low affinity for TTX (250-700 nM). Binding experiments (bioassay and [3H]en-TTX binding) on cultured cardiac cells from newborn rats indicate the presence of both high and low affinity binding sites for TTX with dissociation constants (Kd) of 1.6 and 135 nM, respectively. On homogenates of hearts taken just after birth, [3H]en-TTX binding reveals no high affinity binding site for TTX but the presence of a low affinity binding site with a Kd of 125 nM. This result was confirmed by kinetic studies and competition experiments. Conversely, binding studies on homogenates and extensively purified membranes from adult ventricles reveal the presence of both high and low affinity binding sites for TTX with Kd values of 1.5 and 170 nM, respectively. The maximum binding capacity for the low affinity binding sites is 45 times higher than that of the high affinity binding sites. High affinity sites do not exist at the fetal stage or at birth, but after 5 days their number gradually increases to reach a maximum level around 45 days after birth. Conversely, the number of low affinity binding sites is essentially invariant between birth and adulthood. Monolayers of cardiac cells from hearts at 2 days after birth which have no high affinity TTX-binding sites in vivo develop both high and low affinity binding sites for TTX in vitro. The results presented here are the first direct demonstration of the coexistence in rat heart plasma membrane of two families of binding sites for TTX.  相似文献   

13.
The Ag processing and structural requirements involved in the generation of a major T cell epitope from the hen egg-white lysozyme protein (HEL74-88), containing two cysteine residues at positions 76 and 80, were investigated. Several T cell hybridomas derived from both low responder (I-Ab) and high responder (I-Ak) mice recognize this region. These hybridomas are strongly responsive to native HEL, but unresponsive to the reduced and carboxymethylated protein. Air-oxidized HEL74-88 peptide was unable to bind I-Ak molecules and failed to stimulate T cells in the absence of intracellular Ag processing. Further functional competition assays showed that alkylation of cysteine residues with bulky methyl groups interferes with the contacts for the MHC class II molecules (I-Ak) of high responder mice and the I-Ab-restricted TCR of low responder mice. Serine substitutions of the cysteine residues of HEL74-88 either enhanced or abrogated T cell stimulation by the peptides without significant alterations in the class II binding. These results suggest that the cysteine residues of peptides must be free from disulfide bonding for efficient stimulation of T cells and yet frequently used modifications of cysteine residues may not be suitable for peptide-based vaccine development.  相似文献   

14.
15.
Broadly neutralizing anti-hepatitis B virus (HBV) antibody HzKR127 undergoes a fairly large conformational change of CDR H3 loop upon binding to HBV preS1 epitope peptide. In this study, we identified low-affinity antibody-binding sites in the largely unstructured preS1 region by nuclear magnetic resonance and biochemical studies, indicating that the antibody binds to the preS1 region outside the major immune epitope with low affinity. Surface plasma resonance experiments showed that the full-length preS1 has approximately three fold higher affinity for HzKR127 Fab than the preS1 epitope peptide, suggesting that the presence of low-affinity sites in the preS1 region increases the antibody-binding affinity. Therefore, the low-affinity binding of the antibody to non-epitope regions of preS1 may contribute to effective neutralization.  相似文献   

16.
Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.  相似文献   

17.
The extracellular calcium-binding domain (positions 138-286) of the matrix protein BM-40 possesses a binding epitope of moderate affinity for several collagen types. This epitope was predicted to reside in helix alphaA and to be partially masked by helix alphaC. Here we show that deletion of helix alphaC produces a 10-fold increase in collagen affinity similar to that seen after proteolytic cleavage of this helix. The predicted removal of the steric constraint was clearly demonstrated by the crystal structure of the mutant at 2.8 A resolution. This constitutively activated mutant was used to map the collagen-binding site following alanine mutagenesis at 13 positions. Five residues were crucial for binding, R149 and N156 in helix alphaA, and L242, M245 and E246 in a loop region connecting the two EF hands of BM-40. These residues are spatially close and form a flat ring of 15 A diameter which matches the diameter of a triple-helical collagen domain. The mutations showed similar effects on binding to collagens I and IV, indicating nearly identical binding sites on both collagens. Selected mutations in the non-activated mutant DeltaI also reduced collagen binding, consistent with the same location of the epitope but in a more cryptic form in intact BM-40.  相似文献   

18.
Although dopamine agonists can recognize two states of the D2 dopamine receptor in the anterior pituitary (D2high and D2low), we examined whether the dopamine antagonists such as [3H]spiperone could recognize these two sites with different affinities. Using up to 30 concentrations of [3H]spiperone, however, we could only detect a single population of binding sites (porcine anterior pituitary homogenates) with a dissociation constant (KD) of 130 pM. When specific [3H]spiperone binding was defined by a low concentration of (+)-butaclamol (100 nM), the apparent density was low. When defined by a high concentration of (+)-butaclamol (10 microM), nonspecific sites became detectable, thus revealing two apparent populations of sites for [3H]spiperone, only one of which was specific for dopamine. Sodium chloride reduced the KD of the single population of specific D2 sites to 64 pM. Guanine nucleotide by itself had no effect on the KD, but enhanced the density by 25%. Since the density-enhancement could be eliminated by extensive washing of membranes, and could be restored by preincubation with dopamine, the nucleotide-induced elevation of D2 density appeared to be a result of the release of tightly bound endogenous dopamine. Thus, monovalent cations and guanine nucleotides appear to have separate regulatory effects on the anterior pituitary D2 receptor that modulate antagonist-receptor interactions. Several maneuvers were used to test whether [3H]spiperone could differentiate between the two agonist-detected subpopulations of sites. Twentyfold different concentrations of [3H]spiperone (47 pM and 1000 pM) were found to label identical proportions of receptors in the D2high and D2low states as detected by the agonist 6,7-dihydroxyaminotetralin (ADTN), suggesting that spiperone labelled equal proportions of D2high and D2low sites without differential affinity for them. In addition, competition of spiperone for D2high sites selectively labelled by the agonist [3H]n-propylnorapomorphine (NPA) had a virtually identical KD for spiperone as did the total D2 receptor population as determined by direct binding studies (75 pM versus 64 pM). [3H]Spiperone also bound to a uniform population of D2low sites induced by preincubation with guanine nucleotide with identical affinity as to the total D2 population. Thus, these data do not support a "reciprocal model" for the D2 receptor (i.e., antagonist having low affinity for D2high and high affinity for D2low in a manner reciprocal to agonists).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Titration of chick progesterone receptor over a wide range of [3H]progesterone concentration (0.15 to 90 nM) shows two distinct types of binding sites in cytosol and in partially purified receptor samples prepared from oviducts of estrogenized chicks. The difference in affinity between the two sites (Kd = 1 nM; Kd = 25 nM) is sufficient to allow analysis by Scatchard plot methods. Ligand competition studies show that both sites have the same relative specificity for progesterone compared to other steroids. Both sites seem to be on the same receptor molecule as shown by their copurification and chromatographic properties. No cooperativity between the two sites has been detected in analysis using either rate kinetics or equilibrium methods. Thus, the function of the low affinity sites is not apparent at this time; it does not appear to function as a "helper" site which influences binding to the high affinity site previously described. The binding constant of the low affinity site is sufficiently strong to allow potential occupancy of these sites in vivo, at least at certain stages of the female reproductive cycle. The hormone-binding activity of the low affinity site can be destroyed after in vitro treatment with alkaline phosphatase, but the high affinity site remains functional under these conditions. Inhibitors of the enzyme block the inactivation. Furthermore, preliminary data in vivo suggest that estrogen administration to the animal can influence the relative titer of the low affinity sites.  相似文献   

20.
The T cell response to complex protein Ag typically focuses on a few, and frequently a single, immunodominant epitope. Several groups have proposed that the mechanism of immunodominance is determined by the steps of Ag processing and presentation including protein unfolding, the sites of proteolytic cleavage, and the affinity of binding to MHC molecules. Also, the failure of the TCR repertoire to recognize MHC-bound peptides, termed a hole in the repertoire, can prevent recognition of a potentially dominant processed peptide. In the present study, we demonstrate that immunodominance can be determined by intermolecular competition for binding to MHC class II molecules between covalently linked T cell epitopes. In addition, we have analyzed the factors controlling T cell recognition of the covalently linked epitopes. In our system, T cell recognition of the dominant epitope is not altered by Ag processing, and is not simply a function of MHC-binding affinity. We propose that adjacent sequences can subtly alter the conformation of an epitope, creating significant changes in T cell recognition. These observations are discussed in terms of the mechanisms of immunodominance and in terms of the development of synthetic peptide vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号