首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many natural proteins have been developed into drugs and produced for direct application. Identifying improved hosts to achieve high-level heterologous protein production is a challenge in the study of heterologous protein expression in recombinant yeast. In this study, a novel high-throughput assay to screen such overproducing Saccharomyces cerevisiae strains was systematically developed. The protocol designed was based on screening host strain derivatives with increased superoxide dismutase dependent resistance to oxidative stress. Yeast cells transformed with recombinant plasmid carrying SOD1 gene as a reporter responded exquisitely to oxidative stress induced by elevated concentrations of paraquat. Improved yeast strains resulting from screening clones subjected to genome shuffling through selective pressure argue for a more effective screening system compared with traditonal selection. Moreover, this approach can be employed in general biochemical analysis without utilization of flow cytometry or well plate reader. Therefore, it is expected that the high-throughput assay would make superior strains producing heterologous proteins.  相似文献   

2.
Filamentous fungi, in particular those of the genus Aspergillus have been well exploited for their ability to produce high levels of extracellular proteins in an inexpensive manner. Since many human proteins with the potential to be used therapeutically are secreted and require post-translational modification for biological activity, eukaryotic expression-secretion systems have been targeted for development. Recent developments in DNA-mediated transformation systems have allowed the utilization of Aspergillus as a host for the production of recombinant proteins. Several features such as well-characterized genetics and the availability of many mutants make Aspergillus nidulans the organism of choice for development of expression secretion systems. Recombinant strains contain integrated expression cassettes often in multiple copy, which are mitotically stable. In this review, we discuss the recent progress made in the use of Aspergillus as expression secretion hosts for the production of proteins of therapeutic significance.  相似文献   

3.
4.
红发夫酵母高产虾青素突变株的选育方法   总被引:1,自引:0,他引:1  
综述了九十年代以来国内外有关提高红发夫酵母产虾青素能力的选育方法,并对各种方法的使用效果作了叙述和评价。通过比较发现,红发夫酵母经NTG诱变后应用筛选剂筛选红色色度高的菌落是目前最有效的选育方法。  相似文献   

5.
6.
The nitrate reductase gene (niaD) is the most frequently utilized as a selectable marker for homologous integration at the niaD locus of Aspergillus oryzae. In this study we developed a method for curing of the niaD-based plasmid integrated on the A. oryzae genome. Positive selection using a modified chlorate medium containing leucine as a nitrogen source enabled efficient isolation of the strains deficient in nitrate assimilation from the niaD(+) transformant. PCR analysis of the strains confirmed that the homologously integrated plasmid carrying the h2b-egfp fusion gene was cured by intrachromosomal recombination which was accompanied by the loss of the EGFP-fluorescence.  相似文献   

7.
A novel transposon assisted signal trapping (TAST) technology, developed to specifically select only the secreted proteins, was used to discover novel extracellular plant proteins from Solarium tuberosum infected with Phytophthora infestans. Analysis of 384 hits provided 191 P. infestans and S. tuberosum sequences of secreted proteins, with an approx. 2/3 of these originating from potato. Subsequent screening for interesting genes was carried out using bioinformatics. A selected variety of the discovered sequences are presented, including a novel S. tuberosum xyloglucan endotransglucosylase (StXTH), which was cloned and subjected to detailed heterologous expression studies in Aspergillus oryzae. RT-PCR analysis of mRNA from A. oryzae StXTH1 transformants revealed that parts of the mRNA pool had been incorrectly processed, and only weak and inconsistent indications of active protein could be detected. A high AT content of StXTH1 and the occurrence of A. oryzae intron donor, acceptor, and branch point recognition sites resulted in erroneous intron interpretation (cryptic introns) of parts of the mRNA coding sequence. This may explain the difficulties generally experienced in expressing plant genes in filamentous fungi.  相似文献   

8.
We have investigated the effect of overproducing each of the three cold shock proteins (CspL, CspP, and CspC) in the mesophilic lactic acid bacterium Lactobacillus plantarum NC8. CspL overproduction transiently alleviated the reduction in growth rate triggered by exposing exponentially growing cells to cold shock (8 degrees C), suggesting that CspL is involved in cold adaptation. The strain overproducing CspC resumed growth more rapidly when stationary-phase cultures were diluted into fresh medium, indicating a role in the adaptation and recovery of nutritionally deprived cells. Overproduction of CspP led to an enhanced capacity to survive freezing.  相似文献   

9.
10.
11.
Citrate synthase is a central player in the acidogenic metabolism of Aspergillus niger. The 5′ upstream sequence (0.9 kb DNA) of citrate synthase gene (citA) from A. niger NCIM 565 was analyzed and its promoter function demonstrated through the heterologous expression of two proteins. The cloned citrate synthase promoter (PcitA) sequence was able to express bar coding sequence thereby conferring phosphinothricin resistance. This sequence was further analyzed by systematic deletions to define an effective but compact functional promoter. The PcitA driven egfp expression showed that PcitA was active in all differentiation cell-stages of A. niger. EGFP expression was highest on non-repressible carbon sources like acetate and glycerol. Mycelial EGFP levels increased during acidogenic growth suggesting that PcitA is functional throughout this cultivation. A. niger PcitA is the first Krebs cycle gene promoter used to express heterologous proteins in filamentous fungi.  相似文献   

12.
13.
14.
Summary Cytokinins are important regulators of growth and development in lower and higher eukaryotic plants. Genetic analysis by means of somatic hybridization, achieved through protoplast fusion, revealed that, of 15 independently isolated gametophore and cytokinin over-producing (OVE) mutants in the model system,Physcomitrella patens, 14 carry recessive mutations responsible for this abnormal phenotype. Seven of these strains have been assigned to three complementation groups:OVEA, OVEB andOVEC. A further three strains have been demonstrated not to belong to theOVEA group and another mutant does not fall into groupOVEB. Phenotypic segregation ratios among progeny obtained following self-fertilization of a number of different somatic hybrids showed that severalOVE mutations behave as recessive alleles of single Mendelian genes.  相似文献   

15.
Mammalian reporter proteins are essential for gene-function analysis, drugscreening initiatives and as model product proteins for biopharmaceutical manufacturing. Bacillus subtilis can maintain its metabolism by secreting Xylanase A (XynA), which converts xylan into shorter xylose oligosaccharides. XynA is a family 11 xylanase monospecific for D-xylose containing substrates. Mammalian cells transgenic for constitutive expression of wild-type xynA showed substantial secretion of this prokaryotic enzyme. Deletion analysis confirmed that a prokaryotic signal sequence encoded within the first 81 nucleotides was compatible with the secretory pathway of mammalian cells. Codon optimization combined with elimination of the prokaryotic signal sequence resulted in an exclusively intracellular mammalian Xylanase A variant (InXy) while replacement by an immunoglobulin-derived secretion signal created an optimal secreted Xylanase A derivative (SeXy). A variety of chromogenic and fluorescence-based assays adapted for use with mammalian cells detected InXy and SeXy with high sensitivity and showed that both reporter proteins resisted repeated freeze/thaw cycles, remained active over wide temperature and pH ranges, were extremely stable in human serum stored at room temperature and could independently be quantified in samples also containing other prominent reporter proteins such as the human placental alkaline phosphatase (SEAP) and the Bacillus stearothermophilus-derived secreted alpha-amylase (SAMY). Glycoprofiling revealed that SeXy produced in mammalian cells was N- glycosylated at four different sites, mutation of which resulted in impaired secretion. SeXy was successfully expressed in a variety of mammalian cell lines and primary cells following transient transfection and transduction with adeno-associated virus particles (AAV) engineered for constitutive SeXy expression. Intramuscular injection of transgenic AAVs into mice showed significant SeXy levels in the bloodstream. InXy and SeXy are highly sensitive, compact and robust reporter proteins, fully compatible with pre-existing marker genes and can be assayed in high-throughput formats using very small sample volumes.  相似文献   

16.
Ma  Zihui  Li  Wei  Zhang  Peng  Lyu  Haining  Hu  Youcai  Yin  Wen-Bing 《Applied microbiology and biotechnology》2018,102(1):297-304
Applied Microbiology and Biotechnology - Aurovertins are the structurally diverse polyketides that distribute widely in different fungal species. They feature a 2,6-dioxabicyclo[3.2.1]-octane ring...  相似文献   

17.
Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.  相似文献   

18.
The effect of two different mutations, one involving an alpha-tubulin (tubA) and the other a beta-tubulin (benA33) gene, on somatic segregation has been investigated in diploid strains of A. nidulans. Both mutations, particularly benA33, increase the level of spontaneous chromosomal mis-distribution (CMD) phenomena, without affecting the frequency of crossing-over. The employment of homozygous strains for each of the two mutations in sensitivity tests toward various chemicals, allowed the clear identification of those interfering with microtubule assembly-disassembly processes (i.e. chloral hydrate, diamide, aminocarb, N-ethyl-maleimide, p-chlormercuribenzoate). Such compounds turned out to be very efficient and specific inducers of CMD in a somatic segregation assay performed using the wild-type strain P1. The same assay, when carried out with some of these compounds but employing a tubA/tubA strain, revealed a marked proneness toward CMD to be associated with such mutation, which is known to confer microtubule hypostability.  相似文献   

19.
Recent developments have been made in the application of directed evolution to achieve the efficient heterologous expression of proteins in Escherichia coli and yeast by increasing the stability and solubility of the protein in the host environment. One interesting conclusion that emerges is that the evolutionary process often improves the stability and solubility of an intermediate (apoprotein, proprotein or folding intermediate) that otherwise constitutes a bottleneck to functional expression, rather than altering the protein's final state.  相似文献   

20.
Gram-negative bacteria are attractive hosts for recombinant protein production because they are fast growing, easy to manipulate, and genetically stable in large cultures. However, the utility of these microbes would expand if they also could secrete the product at commercial scales. Secretion of biotechnologically relevant proteins into the extracellular medium increases product purity from cell culture, decreases downstream processing requirements, and reduces overall cost. Thus, researchers are devoting significant attention to engineering Gram-negative bacteria to secrete recombinant proteins to the extracellular medium. Secretion from these bacteria operates through highly specialized systems, which are able to translocate proteins from the cytosol to the extracellular medium in either one or two steps. Building on past successes, researchers continue to increase the secretion efficiency and titer through these systems in an effort to make them viable for industrial production. Efforts include modifying the secretion tags required for recombinant protein secretion, developing methods to screen or select rapidly for clones with higher titer or efficiency, and improving reliability and robustness of high titer secretion through genetic manipulations. An additional focus is the expression of secretion machineries from pathogenic bacteria in the “workhorse” of biotechnology, Escherichia coli, to reduce handling of pathogenic strains. This review will cover recent advances toward the development of high-expressing, high-secreting Gram-negative production strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号