首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olsson J  Svanbäck R  Eklöv P 《Oecologia》2007,152(1):48-56
Spatial and temporal heterogeneity in the environment is a common feature affecting many natural populations. For example, both the resource levels and optimal habitat choices of individuals likely change over time. One way for organisms to cope with environmental variation is to display adaptive plasticity in traits such as behavior and morphology. Since trait plasticity is hypothesized to be a prerequisite for character divergence, studies of mechanisms behind such plasticity are warranted. In this study, we looked at the interaction of two potentially important environmental variables on behavioral and morphological plasticity in Eurasian perch (Perca fluviatilis L.). More specifically, the plastic responses in activity and morphology of perch exposed to different resource levels and simulated habitat types were studied in an aquarium experiment. The resource level experienced had a large influence on plasticity in both activity and morphology. Behavioral adaptations have been thought to mediate morphological transitions, and we suggest that the morphological response to the resource level was mediated by differences in activity and growth rates. The habitat type also affected morphological plasticity but to a lesser extent, and there was no effect on activity from habitat type. Based on these results, we suggest that it is essential to include several environmental factors acting in concert when studying mechanisms behind trait plasticity. We also propose that variation in resource levels might play a key role in fostering trait plasticity in at least fish populations, while other environmental variables such as divergent habitat complexities and prey types might be less influential. Dynamics in resource levels and optimal habitat choices might thus be important factors influencing character divergence in natural populations.  相似文献   

2.
Phenotypic plasticity can contribute to the process of adaptive radiation by facilitating population persistence in novel environments. West Indian Anolis lizards provide a classic example of an adaptive radiation, in which divergence has occurred along two primary ecological axes: structural microhabitat and climate. Adaptive plasticity in limb morphology is hypothesized to have facilitated divergence along the structural niche axis in Anolis, but very little work has explored plasticity in physiological traits. Here, we experimentally ask whether Puerto Rican Anolis cristatellus from mesic and xeric habitats differ in desiccation rates, and whether these lizards exhibit an acclimation response to changes in relative humidity. We first present microclimatic data collected at lizard perch sites that demonstrate that abiotic conditions experienced by lizards differ between mesic and xeric habitat types. In Experiment 1, we measured desiccation rates of lizards from both habitats maintained under identical laboratory conditions. This experiment demonstrated that desiccation rates differ between populations; xeric lizards lose water more slowly than mesic lizards. In Experiment 2, lizards from each habitat were either maintained under the conditions of Experiment 1, or under extremely low relative humidity. Desiccation rates did not differ between lizards from the same habitat maintained under different treatments and xeric lizards maintained lower desiccation rates than mesic lizards within each treatment. Our results demonstrate that A. cristatellus does not exhibit an acclimation response to abrupt changes of hydric conditions, and suggest that tropical Anolis lizards might be unable to exhibit physiological plasticity in desiccation rates in response to varying climatic conditions.  相似文献   

3.
Habitat-associated morphological divergence in two Neotropical fish species   总被引:6,自引:0,他引:6  
We examined intraspecific morphological diversification between river channel and lagoon habitats for two Neotropical fish ( Bryconops caudomaculatus , Characidae; Biotodoma wavrini , Cichlidae). We hypothesized that differences between habitats (e.g. flow regime, foraging opportunities) might create selective pressures resulting in morphological divergence between conspecific populations. We collected fish from four channel-lagoon habitat pairs in the Río Cinaruco, Venezuela, and compared body morphology using geometric morphometrics. There were two aspects of divergence in both species: (1) placement of maximum body depth and (2) orientation of the mouth. For both species, maximum body depth was positioned more anteriorly (i.e. fusiform) in the river channel than in lagoons. Both species exhibited a relatively terminal mouth in lagoons compared to the channel. The mouth of B. caudomaculatus was relatively upturned, whereas the mouth of B. wavrini was relatively subterminal, in channel habitats. Observed morphological patterns are consistent with functional morphological principles suggesting adaptive divergence. We also show that spatial distance between habitats, presumably reflecting rates of population mixing, appears to have constrained diversification. For both species, morphological divergence increased with distance between habitats. Thus morphological divergence between channel and lagoon habitats apparently reflects a balance between diversification driven by natural selection, and homogenization driven by population mixing.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 689–698.  相似文献   

4.
Dispersal ability has been hypothesized to reduce intraspecific differentiation by homogenizing populations. On the other hand, long‐distance dispersers may have better opportunities to colonize novel habitats, which could result in population divergence. Using direct estimates of natal and breeding dispersal distances, we investigated the relationship between dispersal distances and: (i) population differentiation, assessed as subspecies richness; (ii) ecological plasticity, assessed as the number of habitats used for breeding; and (iii) wing size, assessed as wing length. The number of subspecies was negatively correlated with dispersal distances. This was the case also after correcting for potential confounding factors such as migration and similarity due to common ancestry. Dispersal was not a good predictor of ecological plasticity, suggesting that long‐distance dispersers do not have more opportunities to colonize novel habitats. Residual wing length was related to natal dispersal, but only for sedentary species. Overall, these results suggest that dispersal can have a homogenizing effect on populations and that low dispersal ability might promote speciation.  相似文献   

5.
以荒漠草原猪毛蒿种群为对象,设置风沙土、灰钙土和基岩风化沉积土3个生境下增水30%、减水30%和对照3个处理,编制猪毛蒿种群的动态生命表,绘制种群存活和死亡曲线,分析异质生境下猪毛蒿种群动态规律,研究猪毛蒿年内年际间种群动态特征.结果表明: 猪毛蒿种群存活曲线趋于Deevey-Ⅰ型,即生长前期存活率较高,趋于稳定状态,死亡率基本维持在较低的水平,生育期末种群死亡率则上升较快.各生境下猪毛蒿个体的存活数均呈前期波动后期下降的趋势,风沙土和灰钙土生境下死亡率的波动变幅较大,增减水处理对猪毛蒿种群死亡率的影响无显著差异.土壤类型对猪毛蒿株高、冠幅、密度、盖度和生物量均有显著影响,降水处理对猪毛蒿株高、冠幅和盖度影响显著,对密度和生物量无显著影响,而土壤类型和降水处理的交互作用仅对株高和冠幅有显著影响.基岩风化沉积土生境下猪毛蒿生物量的可塑性指数显著高于风沙土和灰钙土,灰钙土和基岩风化沉积土生境下盖度可塑性显著高于风沙土.增水处理的密度可塑性指数显著高于对照和减水处理.株高和冠幅的可塑性指数较高,说明在不同的生境压力下,猪毛蒿可以通过优先调节这两个参数来应对生境的变化.  相似文献   

6.
Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.  相似文献   

7.
This study investigated the importance of competition with brown trout Salmo trutta as a driver of the morphological and behavioural divergence of two morphs of Arctic charr Salvelinus alpinus. The morphs originated from two lakes differing in absence or presence of the competitor. The bioenergetics and behaviour of S. alpinus were quantified in replicate experimental enclosures (mean volume: 150 m(3) ) stocked with 15 S. alpinus of one morph or the other and in the absence or presence of nine S. trutta. The presence of S. trutta decreased growth rate, affected food consumption and increased activity costs in S. alpinus, but provided little support for the hypothesis that competition with S. trutta is a major driver of the divergence of the two S. alpinus morphs. Both morphs responded similarly in terms of mean growth and consumption rates per enclosure, but the association between individual morphology and growth rate reversed between allopatric and sympatric enclosures. While the activity patterns of the two morphs were unaffected by the presence of S. trutta, their swimming speed and activity rate differed. Since the profound differences in the structure of the physical habitat of the source lakes provided a more likely explanation for the difference observed among these two morphs than interspecific competition, it is hypothesized that physical habitat may sometimes be a significant driving force of the phenotypic divergence.  相似文献   

8.

Background and Aims

In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.

Methods

Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.

Key Results

In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence.

Conclusions

The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.  相似文献   

9.
Interspecific competition in natural plant communities is highly dependent on nutrient availability. At high levels of nutrient availability, competition is mainly for light. As light is a unidirectional resource, high nutrient habitats are dominated by fast-growing perennials with a tall stature and a rather uniform vertical distribution of leaf area. Moreover, these species have high turnover rates of leaves and roots and a high morphological plasticity during the differentiation of leaves. There is less consensus, however, about the importance and intensity of interspecific competition in nutrient-poor environments. It is argued that selection in nutrient-poor habitats is not necessarily on a high competitive ability for nutrients and a high growth rate, but rather on traits which reduce nutrient losses (low tissue nutrient concentrations, slow tissue turnover rates, high nutrient resorption efficiency). Due to evolutionary trade-offs plants can not maximize both growth rate and nutrient retention. Thus, the low growth rate of species from nutrient-poor habitats should be considered as the consequence of nutrient retention rather than as a feature on which direct selection takes place. The contrasting traits of species from nutrient-poor and nutrient-rich habitats mutually exclude them from each others' habitats. Moreover, these traits have severe consequences for litter decomposability and thereby also for nutrient cycling. This leads both in nutrient-poor and nutrient-rich habitats to a positive feedback between plant species dominance and nutrient availability, thereby promoting ecosystem stability.  相似文献   

10.
Although intraspecific variability is now widely recognized as affecting evolutionary and ecological processes, our knowledge on the importance of intraspecific variability within invasive species is still limited. This is despite the fact that understanding the linkage between within‐population morphological divergences and the use of different trophic or spatial resources (i.e., resource polymorphism) can help to better predict their ecological impacts on recipient ecosystems. Here, we quantified the extent of resource polymorphism within populations of a worldwide invasive crayfish species, Procambarus clarkii, in 16 lake populations by comparing their trophic (estimated using stable isotope analyses) and morphological characteristics between individuals from the littoral and pelagic habitats. Our results first demonstrated that crayfish occured in both littoral and pelagic habitats of seven lakes and that the use of pelagic habitat was associated with increased abundance of littoral crayfish. We then found morphological (i.e., body and chelae shapes) and trophic divergence (i.e., reliance on littoral carbon) among individuals from littoral and pelagic habitats, highlighting the existence of resource polymorphism in invasive populations. There was no genetic differentiation between individuals from the two habitats, implying that this resource polymorphism was stable (i.e., high gene flow between individuals). Finally, we demonstrated that a divergent adaptive process was responsible for the morphological divergence in body and chela shapes between habitats while difference in littoral reliance neutrally evolved under genetic drift. These findings demonstrated that invasive P. clarkii can display strong within‐population phenotypic variability in recent populations, and this could lead to contrasting ecological impacts between littoral and pelagic individuals.  相似文献   

11.
1.?Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2.?Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3.?We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4.?The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex.  相似文献   

12.
Abstract Models of speciation in African rain forests have stressed either the role of isolation or ecological gradients. Here we contrast patterns of morphological and genetic divergence in parapatric and allopatric populations of the Little Greenbul, Andropadus virens, within different and similar habitats. We sampled 263 individuals from 18 sites and four different habitat types in Upper and Lower Guinea. We show that despite relatively high rates of gene flow among populations, A. virens has undergone significant morphological divergence across the savanna-forest ecotone and mountain-forest boundaries. These data support a central component of the divergence-with-gene-flow model of speciation by suggesting that despite large amounts of gene flow, selection is sufficiently intense to cause morphological divergence. Despite evidence of isolation based on neutral genetic markers, we find little evidence of morphological divergence in fitness-related traits between hypothesized refugial areas. Although genetic evidence suggests populations in Upper and Lower Guinea have been isolated for over 2 million years, morphological divergence appears to be driven more by habitat differences than geographic isolation and suggests that selection in parapatry may be more important than geographic isolation in causing adaptive divergence in morphology.  相似文献   

13.
1.  In a 1-month outdoor stream channel experiment, we investigated the relative importance of habitat complexity (i.e. cobbled area) and the presence of adult signal crayfish ( Pacifastacus leniusculus ) males on the survival and growth of juveniles.
2.  In treatments with high habitat complexity, more juveniles survived, more were newly moulted and they had a higher specific growth rate (SGR) at the end of the experiment than juveniles in treatments with low habitat complexity. The presence of adult males did not affect survival, moulting stage or growth of the juveniles.
3.  The presence of adult males decreased juvenile activity during night. Juveniles in treatments with low habitat complexity were more active than juveniles in high habitat complexity during both day and night.
4.  There was no difference in total invertebrate biomass between treatments. However, some invertebrate taxa, such as Chironomidae larvae, were affected by habitat complexity or the presence of adult crayfish. Juvenile crayfish in all channels had consumed detritus, algae and Chironomidae larvae and there were no differences in gut contents or stable isotope signals (carbon and nitrogen) between treatments, indicating a similar diet among the juveniles across treatments. However, the biomass of chironomids was significantly higher in channels with adult crayfish present, indicating a decreased consumption of chironomids by juveniles in the presence of adults.
5.  Our results suggest that the recruitment of juvenile crayfish is mostly affected by habitat complexity. The competition for food and shelter and aggressive interactions between the juveniles were most pronounced in low habitat complexity, indicating that habitats with a good access to shelter will enhance recruitment of juvenile crayfish in streams.  相似文献   

14.
入侵植物银胶菊在不同生境下表型可塑性和构件生物量   总被引:5,自引:4,他引:1  
研究了入侵植物银胶菊在4种不同小生境间花果期形态特征变化和构件生物量特征。结果显示:在植株密度小但土壤肥沃的小生境中,植株各形态指标如茎长、茎直径和花序直径等都明显高于其它小生境,在生物量结构特征上则表现为总生物量和花果生物量所占比例的升高。随着植株密度的增加以及土壤肥力下降,上述各形态指标都发生了较明显的变化,生物量投资也进行了优化配置,银胶菊表现出了较高的形态可塑性。银胶菊与觅光和竞争相关的几个指标如叶和根的比例都增加,但用于生殖构件的比例却减少了。相关分析显示,银胶菊花果期各构件生物量与高度成正相关,与密度为负相关,并受环境因素的制约。表明,较高的形态可塑性和较强的生殖配置策略可能是银胶菊成功入侵我国的重要特征。  相似文献   

15.
Understanding population‐level responses to human‐induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic‐level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population‐level differences in morphology persisted in offspring but morphological variation compared with field‐collected individuals was limited to the head region. Populations demonstrated dissimilar flow‐induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.  相似文献   

16.
Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split‐brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD‐seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.  相似文献   

17.
扎龙湿地芦苇分株生态可塑性及其对土壤因子的响应   总被引:1,自引:0,他引:1  
焦德志  于欣宇  王昱深  潘林  杨允菲 《生态学报》2019,39(11):4149-4157
扎龙湿地的芦苇既可形成大面积的单优群落,也可形成不同群落斑块。采用大样本抽样调查与统计分析方法,对湿地内水生生境、湿生生境、旱生生境和盐碱生境芦苇种群分株高度和生物量进行比较。结果表明,6—10月份,4个生境芦苇种群分株高度及生物量均以水生生境最高,盐碱生境最低,水生生境株高为盐碱生境的1.5—2.3倍,分株生物量为2.0—5.1倍,生境间的差异性以及差异序位均相对稳定。4个生境株高生境间变异系数(19.45%—31.56%)均高于生境内变异系数(8.07%—17.61%),分株高度在生境间的可塑性更大;分株生物量中水生生境、湿生生境和盐碱生境3个生境间的变异系数(33.43%—55.61%)均低于生境内变异系数(44.85%—79.82%),分株生物量在生境内的可塑性更大。不同生境条件下芦苇种群分株,在生长和生产上均存在较大的生态可塑性,表现出明显的环境效应,其中土壤含水量是该地区芦苇分株生态可塑性变异的主要驱动因子(R0.80),为正向驱动。  相似文献   

18.
Aims The volume of soil beyond a plant's roots from which that plant is able to acquire a particular nutrient depends upon the mobility of that nutrient in the soil. For this reason it has been hypothesized that the strength of competitive interactions between plants vary with soil nutrient mobility. We aimed to provide an experimental test of this hypothesis.Methods We devised two experimental systems to investigate specifically the effect of nutrient transport rates upon intraspecific competition. In the first, the exchange of rhizosphere water and dissolved nutrients between two connected pots, each containing one plant, was manipulated by alternately raising and lowering the pots. In the second experiment, the roots systems of two competing plants were separated by partitions of differing porosity, thereby varying the plants' access to water and nutrients in the other plant′s rhizosphere. In this second experiment, we also applied varying amounts of nutrients to test whether higher nutrient input would reduce competition when competition for light is avoided, and applied different water levels to affect nutrient concentrations without changing nutrient supply.Important findings In both experiments, lower mobility reduced competitive effects on plant biomass and on relative growth rate (RGR), as hypothesized. In the second experiment, however, competition was more intense under high nutrient input, suggesting that low nutrient supply rates reduced the strength of the superior competitor. Competitive effects on RGR were only evident under the low water level, suggesting that under lower nutrient concentrations, competitive effects might be less pronounced. Taken together, our results provide the first direct experimental evidence that a reduction in nutrient mobility can reduce the intensity of competition between plants.  相似文献   

19.
It has been hypothesized that inter-specific competition will reduce species niche utilization and drive morphological evolution in character displacement. In the absence of a competitor, intra-specific competition may favor an expansion of the species niche and drive morphological evolution in character release. Despite of this theoretical framework, we sometimes find potential competitor species using the same niche range without any partitioning in niche. We used a database on test fishing in Sweden to evaluate the factors (inter- and intraspecific competition, predation, and abiotic factors) that could influence habitat choice of two competitor species. The pattern from the database shows that the occurrence of perch and roach occupying both littoral and pelagic habitats of lakes in Sweden is a general phenomenon. Furthermore, the results from the database suggest that this pattern is due to intra-specific competition rather than inter-specific competition or predation. In a field study, we estimated the morphological variation in perch and roach and found that, individuals of both species caught in the littoral zone were more deeper bodied compared to individuals caught in the pelagic zone. Pelagic perch fed more on zooplankton compared to littoral perch, independent of size, whereas the littoral perch had more macroinvertebrates and fish in their diet. Pelagic roach fed more on zooplankton compared to littoral roach, whereas littoral individuals fed more on plant material. Furthermore, we sampled littoral and pelagic fish from another lake to evaluate the generality of our first results and found the same habitat associated morphology in both perch and roach. The results show a consistent multi-species morphological separation in the littoral and pelagic habitats. This study suggests that intra-specific competition is possibly more important than inter-specific competition for the morphological pattern in the perch-roach system.  相似文献   

20.
焦德志  钟露朋  张艳馥  潘林  杨允菲 《生态学报》2022,42(15):6103-6110
不同环境条件下的植物个体可以表现出形态特征的分异和物质分配的权衡与调整。采用大样本抽样调查与统计分析方法,比较研究扎龙湿地不同生境芦苇(Phragmites Australis)生殖株和营养株的形态特征以及生物量分配的异速关系。结果表明:在9月末,盐碱生境、旱生生境、湿生生境和水生生境芦苇分株的生长表现出较大的生态可塑性,株高和株重均以盐碱生境最小,水生生境最大,最大值与最小值的比值分别为1.3—3.3和1.8—5.1,分株生长在种群间的变异度高于种群内,与营养株相比,生殖株的变异度较低;分株的支持分配与生产分配的比值为1.8—4.2,生产分配以盐碱生境最高,以水生生境最低,而支持分配和生殖分配表现与生产分配相反的序位;生殖株的花序长和花序重与株高间呈直线函数形式增长,株高和株重低于种群平均值的20%和35%的分株不进行有性生殖;叶重、叶鞘和茎重以及分株重与株高间呈幂函数形式的异速生长关系。植物通过改变个体的形态特征以及调整构件间生物量分配适应不同环境,而受遗传因素控制的构件间生长关系却相对稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号