首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ts110 Moloney murine sarcoma virus (Mo-MuSV)-nonproductively infected cells (6m2) have a transformed phenotype at 28 to 33 degrees C and a normal phenotype at 39 degrees C. At temperatures permissive for transformation, 6m2 cells contain P58gag produced from the 4.0-kilobase (kb) viral RNA genome and P85gag-mos translated from a 3.5-kb spliced mRNA. At 39 degrees C, only the 4.0-kb RNA and its product P58gag are detected. Two temperature-sensitive defects have been observed in ts110-infected 6m2 cells: (i) the splicing of the 4.0-kb RNA to the 3.5-kb RNA; and (ii) the thermolability of P85gag-mos and its kinase activity relative to the wild-type revertant protein, termed P100gag-mos (R.B. Arlinghaus, J. Gen. Virol. 66:1845-1853, 1985). In the present study, we examined the mos gene products of two cell lines (204-2F6 and 204-2F8) obtained by infection of normal rat kidney cells with ts110 Mo-MuSV as a simian sarcoma-associated virus pseudotype to see whether the temperature-sensitive splicing defect could be transferred by viral infection. Southern blot analysis of these two cell lines showed that viral DNAs containing restriction fragments from cellular DNA are different from those in 6m2 cells, indicating that 204-2F6 and 204-2F8 cells have different ts110 provirus integration sites from those of 6m2 cells. Northern blots, S1 mapping analyses, and immunoprecipitation experiments showed unequivocally that the splicing defect of ts110 Mo-MuSV is virus encoded and is independent of host cell factors.  相似文献   

2.
3.
Antibody to a synthetic peptide (anti-C3 serum) with the predicted sequence of the C terminus of the Moloney murine sarcoma virus (strain 124) v-mos gene was used in immunoprecipitation experiments with cytoplasmic extracts of a clone of NRK cells infected with ts110 Moloney murine sarcoma virus, termed 6m2 cells. ts110 Moloney murine sarcoma virus codes for two viral proteins of 85,000 and 58,000 Mr, termed P85 and P58, respectively, in nonproducer 6m2 cells maintained at 33°C. Anti-C3 serum specifically recognized [3H]leucine-labeled P85, but not P58, from infected cells maintained at 33°C, whereas antiserum prepared against murine leukemia virus p12 recognized both proteins. Normal serum and anti-C3 serum pretreated with excess C3 peptide did not precipitate P85. Immunoprecipitation experiments after metabolic labeling of 6m2 cells with 32Pi showed that P85 is phosphorylated. Both anti-C3 and anti-p12 sera specifically detected 32P-labeled P85. Cell-free translation of ts110 murine sarcoma virus/murine lukemia virus RNA produces P85, P58, and helper virus protein Pr63gag. Anti-C3 serum specifically precipitated P85 but neither P58 nor Pr63gag. We conclude from these studies that P85 is a product of both the gag and mos genes of ts110 murine sarcoma virus, and, therefore, it is referred to as P85gag-mos. We have not detected any other v-mos gene product in ts110-infected cells.  相似文献   

4.
5.
The Moloney murine sarcoma-leukemia virus [M-MSV (MuLV)], propagated at high multiplicity of infection (MOI), was demonstrated previously to contain a native genome mass of 4 X 10(6) daltons as contrasted to a mass of 7 X 10(6) daltons for Moloney murine leukemia virus (M-MuLV). The 4 X 10(6)-dalton classof RNA from M-MSV (MuLV) was examined for base sequence homology with DNA complementary to the 7 X 10(6)-dalton M-MuLV RNA genome. Approximately 86% of the M-MSV (MuLV) was protected from RNase digestion by hybridization, whereas 95% of M-MuLV was protected under identical conditions. These results indicate that the small RNA class of high-MOI M-MSV (MuLV) contains little (perhaps 10%) genetic information not present in M-MuLV. Virtually all of the 1.8 X 10(6)-dalton subunits of M-MSV (MuLV) RNA contained regions of poly(A) since 94% of the RNA bound to oligo(dT) cellulose in 0.5 M KCl. This suggests that the formation of the 1.8 X 10(6)-dalton subunits occurs before their packaging into virions and does not result from hydrolysis of intact 3.5 X 10(6)-dalton subunits by a virion-associated nuclease.  相似文献   

6.
We investigated the nature of the defect in the temperature-sensitive mutant of Moloney murine sarcoma virus (Mo-MuSV), termed ts110. This mutant has a temperature-sensitive defect in a function required for maintenance of the transformed state. A nonproducer cell clone, 6m2, infected with ts110 expresses P85 and P58 at 33°C, the transformed temperature, but only P58 is detected at the restrictive temperature of 39°C. Shift-up (33°C → 39°C) and in vitro experiments have established that P85 is not thermolabile for immunoprecipitation. Previous temperature-shift experiments (39°C → 33°C) have shown that P85 synthesis resumes after a 2–3 hr lag period. Temperature shifts (39°C → 33°C) performed in the presence of actinomycin D prevented the synthesis of P85, whereas P58 synthesis did not decline for 5 hr, suggesting that P58 and P85 are translated from different mRNAs. The shift-up experiments also indicated that, once made, the RNA coding for P85 can function at the restrictive temperature for several hours. MuSV-ts110-infected cells superinfected with Mo-MuLV produced a ts110 MuSV-MuLV mixture. Sucrose gradient analysis of virus subunit RNAs revealed a ~28S and a ~35S peak. Electrophoresis of the ~28S poly(A)-containing RNA from ts110 virus in methyl mercuric hydroxide gels resolved two RNAs with estimated sizes of 1.9 × 106 and 1.6 × 106 daltons, both smaller than the wild type MuSV-349 genomic RNA (2.2 × 106 daltons). RNA in the ~28S size class from virus preparations harvested at 33°C was found to translate from P85 and P58, whereas, the ~35S RNA yielded helper virus Pr63gag. In contrast, virus harvested at 39°C was deficient in P85 coding RNA only. Peptide mapping experiments indicate that P85 contains P23 sequences, a candidate Moloney mouse sarcoma virus src gene product. Taken together, these results suggest that two virus-specific RNAs are present in ts 110-infected 6m2 cells and rescued ts110 pseudotype virions at 33°C, one coding for P85, whose expression can be interfered with by shifting the culture to 39°C; the other coding for P58, whose expression is unaffected by temperature shifts. P85 is a candidate gag-src fusion protein, while P58 contains gag sequences only.  相似文献   

7.
8.
Maturation of dimeric viral RNA of Moloney murine leukemia virus.   总被引:11,自引:20,他引:11       下载免费PDF全文
W Fu  A Rein 《Journal of virology》1993,67(9):5443-5449
We have analyzed the dimeric RNA present in Moloney murine leukemia virus (MoMuLV) particles. We found that the RNA in newly released virions is in a conformation different from that in mature virions, since it has a different electrophoretic mobility in nondenaturing agarose gels and dissociates into monomers at a lower temperature. On the basis of these results, we suggest that the RNA initially packaged into nascent virions is already dimeric but that the dimer undergoes a maturation process after the virus is released from the cell. In further experiments, we tested the possibility that this maturation event is linked to the maturation cleavage of the virion proteins, which is catalyzed by the viral protease (PR). We found that the dimeric RNA isolated from PR- mutant virions resembles that from immature virions: it has a lower electrophoretic mobility and a lower sedimentation rate, and it also dissociates at a lower temperature than does RNA from mature wild-type virions. When Kirsten sarcoma virus is rescued by a PR- mutant or by a somewhat leaky cysteine array mutant of MoMuLV, its RNA also exhibits a electrophoretic mobility lower than that in the wild-type pseudotype. These results suggest that the maturation of dimeric RNA in released virus particles requires the cleavage of the Gag precursor and the presence of an intact cysteine array in the released nucleocapsid protein.  相似文献   

9.
10.
11.
The 5' splice site signal (5'ss) in Moloney murine sarcoma virus ts110 (MuSVts110) RNA was found to participate in the regulation of its splicing phenotype. This 5'ss (CAG/GUAGGA) departs from the mammalian consensus (CAG/GURAGU) at positions +4 and +6, both of which base pair with U1 and U6 small nuclear RNAs during splicing. A doubling in splicing efficiency and near elimination of the splicing thermosensitivity characteristic of MuSVts110 were observed in 5'ss mutants containing a U at position +6 (termed 5' A6U), even in those in which U1-5'ss complementarity had been reduced. At the permissive temperature (28 degrees C), the 5' A6U mutation increased the efficiency of the second splicing reaction, while at the nonpermissive temperature (39 degrees C), both splicing reactions were positively affected.  相似文献   

12.
Heteroduplex analysis of the RNA isolated from purified virions of clone 3 Moloney murine sarcoma virus (M-MSV) hybridized to cDNA's from Moloney murine leukemia virus (M-MLV) and clone 124 M-MSV shows that the main physical component of clone 3 RNA is missing all or most of the 1.5-kilobase (kb) clone 124 M-MSV specific sequence denoted beta s (S. Hu et al. Cell 10:469--477, 1977). This sequence is either deleted in clone 3 RNA or substituted by a very short (0.3-kilobase) sequence. In other respects, clone 3 and clone 124 RNAs show the same heteroduplex structure relative to M-MLV. Since beta s is believed to contain the src gene(s) of clone 124 RNA, this result leaves as an unresolved question the nature of the src gene(s) of the clone 3 M-MSV RNA complex.  相似文献   

13.
14.
Murine leukemia virus (MLV) produces the unspliced RNA and the singly spliced RNA at a proper ratio at a time. To identify cis-elements involved in the production of the unspliced RNA, we examined the level of unspliced RNA in a series of mutants derived from a prototype Moloney MLV mutant gag-encoding G3.6. Our present data indicated that nt 1560-1906 region in the CA-encoding region in gag was the negative cis-element and nt 5119-5355 region, which was immediately upstream of the splice acceptor site, was the positive cis-element for expression of the unspliced RNA. It was found that the former element made expression of the unspliced RNA dependent upon the latter. These two elements were functional as discrete elements and their activities were relatively position-independent.  相似文献   

15.
Previously, we reported that transformation associated protein (TAP) was over-expressed in the 6m2 line, but not in their normal counterparts (1,2). 6m2 is a culture of NRK cells transformed by the ts-110 mutant of MSV-M. The synthesis of TAP and the expression of transformation properties in the 6m2 cells are all temperature-sensitive (2; 3; 4). TAP is secreted as two polypeptides of 64 kD and 68 kD (P64 and P68) (2). Experiments were carried out to determine whether any metalloproteinase (MP) activity was associated with TAP. Results of zymograms indicated that the two forms of purified TAP (P64 and P68) had MP activity, using gelatin or collagen type IV as substrates. Serum-free medium (SFM) of 6m2 cells incubated at 33 degrees C also showed two bands of MP activity, while the corresponding SFM from 6m2 cells at 39 degrees C lacked such MP activity, indicating that the synthesis of MP was temperature-sensitive. The association of MP activity with the P64 and P68 bands of TAP (purified or in SFM) was confirmed by simultaneous Western blot analysis, which showed the reactivity of the two MP bands with monoclonal or polyclonal antibodies to TAP. Accordingly, what we previously designated as TAP is apparently one form of MP, which are known to be involved in tumor cell metastasis.  相似文献   

16.
Several determinants that appear to promote the dimerization of murine retroviral genomic RNA have been identified. The interaction between these determinants has not been extensively examined. Previously, we proposed that dimerization of the Moloney murine sarcoma virus genomic RNAs relies upon the concentration-dependent interactions of a conserved palindrome that is initiated by separate G-rich stretches (H. Ly, D. P. Nierlich, J. C. Olsen, and A. H. Kaplan, J. Virol. 73:7255-7261, 1999). The cooperative action of these two elements was examined using a combination of genetic and antisense approaches. Dimerization of RNA molecules carrying both the palindrome and G-rich sequences was completely inhibited by an oligonucleotide complementary to the palindrome; molecules lacking the palindrome could not dimerize in the presence of oligomers that hybridize to two G-rich sequences. The results of spontaneous dimerization experiments also demonstrated that RNA molecules lacking either of the two stretches of guanines dimerized much more slowly than the full-length molecule which includes the dimer linkage structure (DLS). However, the addition of an oligonucleotide complementary to the remaining stretch of guanines restored the kinetics of dimerization to wild-type levels. The ability of this oligomer to rescue the kinetics of dimerization was dependent on the presence of the palindrome, suggesting that interactions within the G-rich regions produce changes in the palindrome that allow dimerization to proceed with maximum efficiency. Further, unsuccessful attempts to produce heterodimers between constructs lacking various combinations of these elements indicate that the G-rich regions and the palindrome do not interact directly. Finally, we demonstrate that both of these elements are important in maintaining efficient viral replication. Modified antisense oligonucleotides targeting the DLS were found to reduce the level of viral vector titer production. The reduction in viral titer is due to a decrease in the efficiency of viral genomic RNA encapsidation. Overall, our data support a dynamic model of retroviral RNA dimerization in which discrete dimerization elements act in a concerted fashion.  相似文献   

17.
In this study, the two forms of affinity-purified transformation-associated proteins (TAPs) (68 and 64 kD) were shown to have different substrate preferences. For the 68-kD TAP, the order of substrate preference was collagen types I, III, and V; fibronectin; gelatin; and collagen IV. For the 64-kD TAP, the order of substrate preference was collagen I, III, and V and gelatin. The 64-kD TAP did not cleave collagen IV and fibronectin. We also found a 71-kD metalloproteinase in the concentrated purified TAPs that reacted only weakly with a TAP monoclonal antibody and showed this substrate preference: collagen I, III, and V; gelatin; and collagen IV. Whether this 71-kD TAP is a new member of the rat metalloproteinase family will be investigated.  相似文献   

18.
By the use of a highly specific monoclonal antibody (designated MC), we were able to detect three radiolabeled bands with molecular weights of 60,000, 63,000, and 66,000 daltons in the ts-110 Moloney murine sarcoma virus mutant-transformed rat kidney cells known as 6M2. Expression of transformation properties as well as these three bands in 6M2 cells was found to be temperature sensitive. Therefore, MC detected factors that are apparently associated with the transformation of 6M2 cells. These factors are tentatively referred to as transformation associated proteins. These transformation proteins were found in two other Moloney murine sarcoma virus-transformed rat cell lines. These proteins were found to differ from known gene products of the ts-110 Moloney murine sarcoma virus mutant and do not have kinase activity. The transformation associated proteins may represent rat cellular factors activated during the transformation of rat cells by Moloney murine sarcoma virus.  相似文献   

19.
Mouse cells productively infected with Moloney murine leukemia virus were treated with interferon, and intracellular virus-specific RNA was studied by hybridization with complementary DNA. The steady-state concentration of virus-specific RNA in interferon-treated cells was somewhat greater than that in untreated cells, and the rates of virus-specific RNA synthesis were approximately equal in treated and untreated cells.  相似文献   

20.
D Dina  K Beemon  P Duesberg 《Cell》1976,9(2):299-309
The 50S-70S RNA of a Moloney sarcoma-leukemia virus [Mo-MSV(MLV)] complex produced by a particular mouse cell line was shown by gel electrophoresis to contain a major (97%) 30S sarcoma-specific subunit species and a minor (3%) 38S leukemia virus-specific subunit. On the basis of its sedimentation coefficient and known complexity, the 30S Mo-MSV RNA was estimated to be a unique RNA molecule of about 6000 nucleotides. Hybridization experiments using viral RNA and DNA complementary to viral RNA (cDNA) made by viral DNA polymerase indicated that the 30S Mo-MSV RNA shared 70% of its sequences with Mo-MLV, 30% with another MLV derived from Mo-MLV, and 30% with Kirsten sarcoma-xenotropic leukemia virus. The 30S Mo-MSV RNA sequences shared with these viruses were not additive. The Tm of a Mo-MSV RNA-MLV cDNA hybrid was 83 degrees C, indicating that large contiguous nucleotide sequences were shared between the two nucleic acids. Mo-MSV RNA and Mo-MLV RNA shared possibly seven of 20-30 RNAase T1-resistant oligonucleotides, while Mo-MSV RNA contained three, and Mo-MLV RNA contained at least five specific oligonucleotides. We conclude that the 30S Mo-MSV RNA molecule consists of approximately 70% (about 4200 nucleotides) Mo-MLV-specific sequences and of 30% (1800 nucleotides) Mo-MSV-specific sequences covalently linked. Our results favor the hypothesis that 30S Mo-MSV RNA was generated by recombination between Mo-MLV and other genetic elements. We discuss whether all or only the MSV-specific sequences of the 30S Mo-MSV RNA function as sarcoma genes. Mo-MLV cDNA was hybridized about 45% by unfractionated Mo-MSV (MLV) RNA at RNA/DNA ratios of up to 10, about 50% by electrophoretically purified 30S Mo-MSV RNA at RNA/DNA ratios up to 500, but close to 100% by unfractionated Mo-MSV(MLV) RNA at RNA/DNA ratios over 900. This indicated that unfractionated RNA of our Mo-MSV(MLV) contained a complete complement of Mo-MLV, albeit at a low ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号