首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded DNA phages require two proteins for efficient host lysis: the endolysin, a muralytic enzyme, and the holin, a small membrane protein. In an event that defines the end of the vegetative cycle, the lambda holin S acts suddenly to permeabilize the membrane. This permeabilization enables the R endolysin to attack the cell wall, after which cell lysis occurs within seconds. A C-terminal fusion of the R endolysin with full-length beta-galactosidase (beta-Gal) was tested for lytic competence in the context of the late-gene expression system of an induced lambda lysogen. Under these conditions, the hybrid R-beta-Gal product, an active tetrameric beta-Gal greater than 480 kDa in mass, was fully functional in lysis mediated by the S holin. Western blot analysis demonstrated that the lytic competence was not due to the proteolytic release of the endolysin domain of the R-beta-Gal fusion protein. The ability of this massive complex to be released by the S holin suggests that S causes a generalized membrane disruption rather than a regular oligomeric membrane pore. Similar results were obtained with an early lysis variant of the S holin and also in parallel experiments with the T4 holin, T, in an identical lambda context. However, premature holin lesions triggered by depolarization of the membrane were nonpermissive for the hybrid endolysin, indicating that these premature lesions constituted less-profound damage to the membrane. Finally, a truncated T holin functional in lysis with the endolysin is completely incompetent for lysis with the hybrid endolysin. A model for the formation of the membrane lesion within homo-oligomeric rafts of holin proteins is discussed.  相似文献   

2.
Like most double‐stranded (ds) DNA phages, mycobacteriophage Ms6 uses the holin‐endolysin system to achieve lysis of its host. In addition to endolysin (lysA) and holin (hol) genes, Ms6 encodes three accessory lysis proteins. In this study we investigated the lysis function of Gp1, which is encoded by the gp1 gene that lies immediately upstream of lysA. Escherichia coli lysis was observed after coexpression of LysA and Gp1 in the absence of Ms6 holin. Gp1 does not belong to the holin class of proteins, and we provide evidence that it shares several characteristics with molecular chaperones. We show that Gp1 interacts with LysA, and that this interaction is necessary for LysA delivery to its target. In addition, PhoA fusions showed that, in Mycobacterium smegmatis, LysA is exported to the extracytoplasmic environment in the presence of Gp1. We also show that Gp1 is necessary for efficient M. smegmatis lysis, as Ms6 gp1 deletion results in host lysis defects. We propose that delivery of Ms6 endolysin to the murein layer is assisted by Gp1, a chaperone‐like protein, in a holin‐independent manner.  相似文献   

3.
Previously, two genes, designated as lyt and hol, were identified in the lysis module of phage μ1/6. They were cloned and expressed in Escherichia coli. An additional candidate holin gene, hol2, was found downstream from the hol gene based on one predicted transmembrane domain and a highly charged C-terminal sequence of the encoded protein. Expression of hol or hol2 in E. coli was shown to cause cell death. The concomitant expression of λ endolysin (R) and μ1/6 holin resulted in cell lysis. Similarly, the coexpression of the endolysin and holin of phage μ1/6 led to lysis, apparently due to the ability of μ1/6 endolysin to hydrolyze the peptidoglycan layer of this bacterium. In contrast, the simultaneous expression of μ1/6 hol2 and the endolysin gene (λR or μ1/6 lyt) did not cause detectable lysis of the host cells. Demonstration of the holin function in streptomycetes was achieved by providing for the release of μ1/6 endolysin to the periplasm and subsequent cleavage of the peptidoglycan, which strongly suggested that the holin produces lesions in the streptomycete membrane.  相似文献   

4.
Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis.  相似文献   

5.
Clostridium perfringens commonly occurs in food and feed, can produce an enterotoxin frequently implicated in food-borne disease, and has a substantial negative impact on the poultry industry. As a step towards new approaches for control of this organism, we investigated the cell wall lysis system of C. perfringens bacteriophage phi3626, whose dual lysis gene cassette consists of a holin gene and an endolysin gene. Hol3626 has two membrane-spanning domains (MSDs) and is a group II holin. A positively charged beta turn between the two MSDs suggests that both the amino terminus and the carboxy terminus of Hol3626 might be located outside the cell membrane, a very unusual holin topology. Holin function was experimentally demonstrated by using the ability of the holin to complement a deletion of the heterologous phage lambda S holin in lambdadeltaSthf. The endolysin gene ply3626 was cloned in Escherichia coli. However, protein synthesis occurred only when bacteria were supplemented with rare tRNA(Arg) and tRNA(Ile) genes. Formation of inclusion bodies could be avoided by drastically lowering the expression level. Amino-terminal modification by a six-histidine tag did not affect enzyme activity and enabled purification by metal chelate affinity chromatography. Ply3626 has an N-terminal amidase domain and a unique C-terminal portion, which might be responsible for the specific lytic range of the enzyme. All 48 tested strains of C. perfringens were sensitive to the murein hydrolase, whereas other clostridia and bacteria belonging to other genera were generally not affected. This highly specific activity towards C. perfringens might be useful for novel biocontrol measures in food, feed, and complex microbial communities.  相似文献   

6.
LysK is the endolysin from the staphylococcal bacteriophage K, and can digest the cell wall of many staphylococci. Lysostaphin is a bacteriocin secreted by Staphylococcus simulans to kill Staphylococcus aureus. Both LysK and lysostaphin have been shown to lyse methicillin-resistant S. aureus (MRSA). This study describes optimal reaction conditions for the recombinant His-tagged LysK protein (pH range pH 6-10, and 0.3-0.5 M NaCl), and C-His-LysK MIC (32.85+/-4.87 mug mL(-1)). LysK and lysostaphin demonstrate antimicrobial synergy by the checkerboard assay.  相似文献   

7.
An open reading frame encoding an 88 amino acid protein was present downstream of the previously characterized endolysin ofStreptomyces aureofaciens phage μ1/6. Structural analysis of its sequence revealed features characteristic for holin. This open reading frame encoding the putative holin was amplified by polymerase chain reaction and cloned into the expression vector pET-21d(+). Synthesis of the holin-like protein resulted in bacterial cell death but not lysis. Theholμ1/6 gene was able to complement the defective λS allele in the nonsuppressingEscherichia coli HB101 strain to produce phage progeny. This fact suggests that the proteins encoded by both phage genes have analogous function,i.e. the streptomycete holin induces nonspecific lesions in the cytoplasmic membrane, through which the λ endolysin gains an access to its substrate, the cell wall. The concomitant expression of bothS. aureofaciens holμ1/6 and λ endolysin inE. coli resulted in abrupt cell lysis. This result provided further evidence that the product ofholμ1/6 gene is a holin. This work was supported by the VEGA grant of theSlovak Academy of Sciences no. 2/5070/25 and grant of theMinistry of Agriculture of the Slovak Republic no. 2003 5P27/0208 E02.  相似文献   

8.
For most large phages of both Gram-positive and Gram-negative bacteria, there appears to be a single pathway for achieving disruption of the host envelope, requiring at least two phage-encoded lysis functions (a holin and an endolysin). The holin is a small membrane protein which causes a non-specific lesion in the cytoplasmic membrane, which allows the endolysin to gain access to its substrate, the peptidoglycan. The scheduling of host lysis is effected by regulatory mechanisms which govern the synthesis and activity of the holin protein accumulating in the membrane. Accordingly, aspects of expression and function of holin genes are considered here, focusing mainly on the lambdoid S genes. This group of genes, of which lambda S is the prototype, are characterized by a dual-start motif consisting of two Met start codons separated by one or two codons, at least one of which specifies Arg or Lys. Two protein products are elaborated, differing only by two or three N-terminal residues but apparently possessing opposing functions: the shorter polypeptide is the active holin, or lysis-effector, whereas the longer polypeptide apparently acts as an inhibitor of holin function. Models will be considered which may account for the ability of the holin to form a 'hole' in the cytoplasmic membrane at a programmed time, as well as for the inhibitory properties of the longer product. Finally, we discuss recent results suggesting that the dual-start motif can be viewed as a level of regulation superimposed on a timing function intrinsic to the canonical holin structure.  相似文献   

9.
Phage T4 effects lysis by its holin T and its endolysin E. Lysis is inhibited (LIN) if the infected cell is subjected to secondary infections by T4 phage particles. The T4 rI gene is required for LIN in all hosts tested. Here, we show that a cloned rI gene can impose a T-specific LIN on T-mediated lysis in the context of the phage lambda infective cycle, in the absence of other T4 genes and without secondary infection by T4. Moreover, it is shown that the T holin accumulates in the membrane during LIN, forming SDS-resistant oligomers. We show by cross-linking experiments that a T-RI heterodimer is formed during LIN, demonstrating that RI belongs to the functional class of antiholins, such as the S107 protein of lambda, which heterodimerizes with its cognate holin, S105. Finally, we show that the addition of Ni(2+) ions to the medium can block lysis by a T protein hexahistidine-tagged at its C-terminus, suggesting that liganding of the periplasmic domain is sufficient to impose lysis inhibition. The results are discussed in terms of a model in which the LIN-inducing signal of the secondary infecting phage influences a conformational equilibrium assumed by RI in the periplasm.  相似文献   

10.
A new category of methicillin-resistant Staphylococcus aureus (MRSA), called community-acquired MRSA (CA-MRSA), has emerged worldwide. In contrast to previous MRSA, most CA-MRSA carries the Panton-Valentine leukocidin (PVL) genes (lukPVSF) as a virulence genetic trait. Sequence analysis of the lukPVSF gene of a Japanese isolate demonstrated that the gene has more similarity to methicillin-susceptible S. aureus from France than MRSA from the United States. Based on the sequences, we developed a real-time PCR assay for the three key genes of CA-MRSA; that is, lukPVSF, mecA (for methicillin resistance), and spa (for S. aureus). Dual or triple assay for lukPVSF, mecA, and spa in one test tube became possible. The detection limit of the assay with probe and SYBR Green methods was between 2.7 and 2.7 x 10(1) CFU/ml. The assay detected PVL-positive MRSA in clinical (blood) isolates.  相似文献   

11.
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.  相似文献   

12.
This study aims to determine the resistance rates and determinants of fusidic acid among Staphylococcus aureus isolates collected from Chinese pediatric patients with skin and soft tissue infections (SSTIs). Between 2008 and 2009, a total of 186 clinical S. aureus isolates were collected from the pediatric patients with SSTIs, abscess (44.6%) was the most common SSTI in children 0-16 years old. Four clinical isolates (4/186, 2.2%) were resistant to fusidic acid. Two of these isolates were methicillin-resistant S. aureus (MRSA) that carry the fusC gene. The other two isolates were methicillin-sensitive S. aureus (MSSA) that carry the fusB gene. In the two fusB-positive clinical isolates, the fusB gene was located in a transposon-like element that has 99% identity with a pUB101 fragment from S. aureus. The four fusidic acid-resistant clinical isolates were ST1-MRSA-SCCmecV-t127, ST93-MRSA-SCCmecIII-t202, ST680-MSSA-t5415, and ST680-MSSA-t377. The fusidic acid resistance rate of S. aureus isolated from Chinese pediatric patients with SSTIs was low, and the genes fusB and fusC were the main resistance determinants. The transposon-like element that contains the fusB gene might participate in the transmission of fusidic acid resistance genes. This is the first report regarding the emergence of fusidic acid-resistant clinical S. aureus isolates in mainland China.  相似文献   

13.
Gu J  Zuo J  Lei L  Zhao H  Sun C  Feng X  Du C  Li X  Yang Y  Han W 《Bioengineered bugs》2011,2(2):96-99
The endolysin LysGH15, derived from staphylococcal phage GH15, has a wide lytic spectrum and strong lytic activity against Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), in vitro and in vivo. Here, the ability of lethal MRSA to induce mRNA levels of interleukin-6 (IL-6), interleukin-4 (IL-4), and interferon-γ (IFN-γ) in spleen tissues of mice was studied. A large number of bacteria were detected in spleens. The bacteria caused elevated expression levels of these three cytokines. Administration of LysGH15 significantly reduced the number of bacteria and the levels of IL-6, IL-4, and IFN-γ mRNA in spleen cells compared with those in untreated mice at 24 h (P < 0.05). LysGH15 can eliminate a large number of bacteria and effectively alleviate inflammation induced by infection with lethal MRSA.  相似文献   

14.
We have cloned, sequenced, and characterized the genes encoding the lytic system of the unique Staphylococcus aureus phage 187. The endolysin gene ply187 encodes a large cell wall-lytic enzyme (71.6 kDa). The catalytic site, responsible for the hydrolysis of staphylococcal peptidoglycan, was mapped to the N-terminal domain of the protein by the expression of defined ply187 domains. This enzymatically active N terminus showed convincing amino acid sequence homology to an N-acetylmuramoyl-L-alanine amidase, whereas the C-terminal part, whose function is unknown, revealed striking relatedness to major staphylococcal autolysins. An additional reading frame was identified entirely embedded out of frame (+1) within the 5' region of ply187 and was shown to encode a small, hydrophobic protein of holin-like function. The hol187 gene features a dual-start motif, possibly enabling the synthesis of two products of different lengths (57 and 55 amino acids, respectively). Overproduction of Hol187 in Escherichia coli resulted in growth retardation, leakiness of the cytoplasmic membrane, and loss of de novo ATP synthesis. Compared to other holins identified to date, Hol187 completely lacks the highly charged C terminus. The secondary structure of the polypeptide is predicted to consist of two small, antiparallel, hydrophobic, transmembrane helices. These are supposed to be essential for integration into the membrane, since site-specific introduction of negatively charged amino acids into the first transmembrane domain (V7D G8D) completely abolished the function of the Hol187 polypeptide. With antibodies raised against a synthetic 18-mer peptide representing a central part of the protein, it was possible to detect Hol187 in the cytoplasmic membrane of phage-infected S. aureus cells. An important indication that the protein actually functions as a holin in vivo was that the gene (but not the V7D G8D mutation) was able to complement a phage lambda Sam mutation in a nonsuppressing E. coli HB101 background. Plaque formation by lambdagt11::hol187 indicated that both phage genes have analogous functions. The data presented here indicate that a putative holin is encoded on a different reading frame within the enzymatically active domain of ply187 and that the holin is synthesized during the late stage of phage infection and found in the cytoplasmic membrane, where it causes membrane lesions which are thought to enable access of Ply187 to the peptidoglycan of phage-infected Staphylococcus cells.  相似文献   

15.
The mycobacteriophage Ms6 is a temperate double-stranded DNA (dsDNA) bacteriophage which, in addition to the predicted endolysin (LysA)-holin (Gp4) lysis system, encodes three additional proteins within its lysis module: Gp1, LysB, and Gp5. Ms6 Gp4 was previously described as a class II holin-like protein. By analysis of the amino acid sequence of Gp4, an N-terminal signal-arrest-release (SAR) domain was identified, followed by a typical transmembrane domain (TMD), features which have previously been observed for pinholins. A second putative holin gene (gp5) encoding a protein with a predicted single TMD at the N-terminal region was identified at the end of the Ms6 lytic operon. Neither the putative class II holin nor the single TMD polypeptide could trigger lysis in pairwise combinations with the endolysin LysA in Escherichia coli. One-step growth curves and single-burst-size experiments of different Ms6 derivatives with deletions in different regions of the lysis operon demonstrated that the gene products of gp4 and gp5, although nonessential for phage viability, appear to play a role in controlling the timing of lysis: an Ms6 mutant with a deletion of gp4 (Ms6(Δgp4)) caused slightly accelerated lysis, whereas an Ms6(Δgp5) deletion mutant delayed lysis, which is consistent with holin function. Additionally, cross-linking experiments showed that Ms6 Gp4 and Gp5 oligomerize and that both proteins interact. Our results suggest that in Ms6 infection, the correct and programmed timing of lysis is achieved by the combined action of Gp4 and Gp5.  相似文献   

16.
An open reading frame homologous to the genes encoding several cell-wall hydrolyzing enzymes was identified on the genome of actinophage mu 1/6. This open reading frame encoding the putative endolysin was amplified by polymerase chain reaction and cloned into the expression vector pET-21a. This gene consisted of 1182 bp encoding a 393 amino acid polypeptide with a molar mass of 42.1 kDa. The gene product was overexpressed in Escherichia coli, and then the lytic enzyme was purified by a two-step chromatographic procedure. When applied exogenously, the endolysin of phage mu 1/6 was active against all tested Streptomyces strains but did not affect other bacteria. The amino acid sequence showed a high homology with a putative amidase of the Streptomyces phase phi C31. Downstream of the endolysin gene, an open reading frame encoding an 88 amino acid protein was identified. Structural analysis of its sequence revealed features characteristics for holin.  相似文献   

17.
Bacteriophage lambda uses a holin-endolysin system for host cell lysis. R, the endolysin, has muralytic activity. S, the holin, is a small membrane protein that permeabilizes the inner membrane at a precisely scheduled time after infection and allows the endolysin access to its substrate, resulting in host cell lysis. lambda S has a single cysteine at position 51 that can be replaced by a serine without loss of the holin function. A collection of 27 single-cysteine products of alleles created from lambda S(C51S) were tested for holin function. Most of the single-cysteine variants retained the ability to support lysis. Mutations with the most defective phenotype clustered in the first two hydrophobic transmembrane domains. Several lines of evidence indicate that S forms an oligomeric structure in the inner membrane. Here we show that oligomerization does not depend on disulfide bridge formation, since the cysteineless S(C51S) (i) is functional as a holin and (ii) shows the same oligomerization pattern as the parental S protein. In contrast, the lysis-defective S(A52V) mutant dimerizes but does not form cross-linkable oligomers. Again, dimerization does not depend on the natural cysteine, since the cysteineless lysis-defective S(A52V/C51S) is found in dimers after treatment of the membrane with a cross-linking agent. Furthermore, under oxidative conditions, dimerization via the natural cysteine is very efficient for S(A52V). Both S(A52V) (dominant negative) and S(A48V) (antidominant) interact with the parental S protein, as judged by oxidative disulfide bridge formation. Thus, productive and unproductive heterodimer formation between the parental protein and the mutants S(A52V) and S(A48V), respectively, may account for the dominant and antidominant lysis phenotypes. Examination of oxidative dimer formation between S variants with single cysteines in the hydrophobic core of the second membrane-spanning domain revealed that positions 48 and 51 are on a dimer interface. These results are discussed in terms of a three-step model leading to S-dependent hole formation in the inner membrane.  相似文献   

18.
The study of the length of the amplification products of the coagulase gene with the subsequent restriction analysis (the method of PCR--restrictive fragment length polymorphism, or RFLP) was used for typing 90 S. aureus strains. Among the strains under study, 78 were methicillin-resistant S. aureus (MRSA) strains, including 74 obtained in 1986 - 2002 in hospitals of different cities of the Russia and Belarus, as well as epidemic strains EMRSA-1, -2, -3, -12, obtained from the National Laboratory of Health, London (UK). The use of this method made it possible to type all the strains under study, which were differentiated into 9 groups by means of endonuclease Sfo1 and 7 groups by means of Alu1. Majority of clinical MRSA strains, belonged, according to the type of restriction, to groups 4 and 5. The study of the coagulase gene by the method of PCR - RFLP made it possible: to analyze the epidemic situation in hospitals for a period of several years; to compare the properties of strains isolated in different hospitals; to establish the genetic relationship of strains, isolated in 1998 - 2002, with strains, isolated in 1986 - 1990. The results of the study suggest that at least two epidemic MRSA strains, genetically similar to international strains, circulate in hospitals of Russia.  相似文献   

19.
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created challenges in treatment of nosocomial infections. The recent clinical emergence of vancomycin-resistant MRSA is a new disconcerting chapter in the evolution of these strains. S. aureus normally produces four PBPs, which are susceptible to modification by beta-lactam antibiotics, an event that leads to bacterial death. The gene product of mecA from MRSA is a penicillin-binding protein (PBP) designated PBP 2a. PBP 2a is refractory to the action of all commercially available beta-lactam antibiotics. Furthermore, PBP 2a is capable of taking over the functions of the other PBPs of S. aureus in the face of the challenge by beta-lactam antibiotics. Three cephalosporins (compounds 1-3) have been studied herein, which show antibacterial activities against MRSA, including the clinically important vancomycin-resistant strains. These cephalosporins exhibit substantially smaller dissociation constants for the preacylation complex compared with the case of typical cephalosporins, but their pseudo-second-order rate constants for encounter with PBP 2a (k(2)/K(s)) are not very large (< or =200 m(-1) s(-1)). It is documented herein that these cephalosporins facilitate a conformational change in PBP 2a, a process that is enhanced in the presence of a synthetic surrogate for cell wall, resulting in increases in the k(2)/K(s) parameter and in more facile enzyme inhibition. These findings argue that the novel cephalosporins are able to co-opt interactions between PBP 2a and the cell wall in gaining access to the active site in the inhibition process, a set of events that leads to effective inhibition of PBP 2a and the attendant killing of the MRSA strains.  相似文献   

20.
Phage lytic enzymes (enzybiotics) have gained attention as prospective tools to eradicate Gram-positive pathogens resistant to antibiotics. Attempts to purify the P16 endolysin of Staphylococcus aureus phage P68 were unsuccessful owing to the poor solubility of the protein. To overcome this limitation, we constructed a chimeric endolysin (P16-17) comprised of the inferred N-terminal d-alanyl-glycyl endopeptidase domain and the C-terminal cell wall targeting domain of the S. aureus phage P16 endolysin and the P17 minor coat protein, respectively. The domain swapping approach and the applied purification procedure resulted in soluble P16-17 protein, which exhibited antimicrobial activity towards S. aureus. In addition, P16-17 augmented the antimicrobial efficacy of the antibiotic gentamicin. This synergistic effect could be useful to reduce the effective dose of aminoglycoside antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号