首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the heteromorphic cells (HMCs) of the cyanobacterium Nostoc muscorum CALU 304 grown in pure culture, monoculture, and a mixed culture with the Rauwolfia callus tissue was studied. The comparative analysis of the cell surface of HMCs, the frequency of the generation of cell forms with defective cell walls (DCWFs), including protoplasts and spheroplasts, and the peculiarities of the cell surface ultrastructure under different growth conditions showed that, in the early terms of mixed incubation, the callus tissue acts to preserve the existing cyanobacterial DCWFs, but begins to promote their formation in the later incubation terms. DCWFs exhibited an integrity of their protoplasm and were metabolically active. It is suggested that structural alterations in the rigid layer of the cell wall may be due to the activation of the murolytic enzymes of cyanobacteria and the profound rearrangement of their peptidoglycan metabolism caused by the Rauwolfia metabolites diffused through the medium. These metabolites may also interfere with the functioning of the universal cell division protein of bacteria, FtsZ. In general, the Rauwolfia callus tissue promoted the unbalanced growth of the cyanobacterium N. muscorum CALU 304 and favored its viability in the mixed culture. The long-term incubation of the Rauwolfia tissue with the N. muscorum CALU 304 cells led to their transformation to L-forms.  相似文献   

2.
A comparative morphological study was conducted ofNostoc muscorum CALU 304 grown either as a pure culture on standard media or as a mixed culture withRauwolfia callus tissue on a medium for plant tissue cultivation. The interaction of the cyanobacterial and plant partners results in their spatial integration into aggregates of specific anatomy, which arise periodically during the mixed culture growth. The morphology of the cyanobacterial cells varies depending on their localization in the mixed aggregate. The degree of cyanobacterial heteromorphism increases with the time of growth of the association. Evidence of the plant origin of the factors inducing heteromorphic changes inN. muscorum was obtained, as well as evidence indicating that these factors can rapidly diffuse in agarized medium. A conclusion is inferred that the heteromorphic cells correspond to bacterial forms that appear during unbalanced growth as an adaptation to altered environmental conditions.  相似文献   

3.
Gorelova  O. A.  Kleimenov  S. Yu. 《Microbiology》2003,72(3):318-326
Five different artificial associations of cyanobacterial cells with the cells or tissues of nightshade and rauwolfia were studied. The associations grown on nitrogen-containing media produced heterocysts. Cyanobacterial cells in the associations retained their ability to take up combined nitrogen from the medium, to store it in the form of cyanophycin granules, and to use them in the process of symbiotic growth. The synthesis and degradation of cyanophycin granules in cyanobacterial cells were more active in the associations than in monocultures. In the symbiotic associations of Chlorogloeopsis fritschii ATCC 27193 with Solanum laciniatum cells and of Nostoc muscorum CALU 304 with the Rauwolfia serpentina callus, heterocysts were produced with a 3- to 30-fold higher cyanophycin content than in pure cyanobacterial cultures. In contrast, in the association of N. muscorum CALU 304 with the Solanum dulcamara callus, heterocysts were produced with a lower cyanophycin content than in the N. muscorum CALU 304 pure culture. The degradation of cyanophycin granules in N. muscorum CALU 304 cells grown in associations with plant tissues or cells was subjected to mathematical analysis. The activation of cyanophycin degradation and heterocyst differentiation in the associations N. muscorum CALU 304–R. serpentinaand C.fritschii–S. laciniatum was accompanied by an enhanced synthesis of the nitrogen-containing alkaloids in plant cells. The data obtained suggest that an integrated system of nitrogen homeostasis can be formed in symbiotic associations. Depending on the growth stage of an association, its plant member can either stimulate the accumulation of combined nitrogen in vegetative cyanobacterial cells in the form of cyanophycin granules, activate their degradation, or initiate the formation of heterocysts independently of the cyanobacterial combined nitrogen deprivation sensing-signaling pathway.  相似文献   

4.
The study of heteromorphic Nostoc muscorum CALU 304 cells, whose formation was induced by 6- to 7-week cocultivation with the Rauwolfia callus tissues under unfavorable conditions, revealed the occurrence of giant cell forms (GCFs) with a volume which was 35–210 times greater than that of standard cyanobacterial cells. Some GCFs had an impaired structure of the murein layer of the cell wall, which resulted in a degree of impairment of the cell wall ranging from the mere loss of its rigidity to its profound degeneration with the retention of only small peptidoglycan fragments. An analysis of thin sections showed that all GCFs had enlarged nucleoids. The photosynthetic membranes of spheroplast-like GCFs formed vesicles with contents analogous to that of nucleoids (DNA strands and ribosomes). About 60% of the vesicles had a size exceeding 300 nm. With the degradation of GCFs, the vesicles appeared in the intercellular slimy matrix. It is suggested that the vesicles are analogous to elementary bodies, which are the minimal and likely primary reproductive elements of L-forms. The data obtained in this study indicate that such L-forms may be produced in the populations of the cyanobionts of natural and model syncyanoses. Along with the other known cyanobacterial forms induced by macrosymbionts, L-forms may represent specific adaptive cell forms generated in response to the action of plant symbionts.  相似文献   

5.
Gorelova OA 《Mikrobiologiia》2000,69(4):565-573
A comparative morphological study was conducted of Nostoc muscorum CALU 304 grown either as a pure culture on standard media or as a mixed culture with Rauwolfia callus tissue on a medium for plant tissue cultivation. The interaction of the cyanobacterial and plant partners results in their spatial integration into aggregates of specific anatomy, which arise periodically during the mixed culture growth. The morphology of the cyanobacterial cells varies depending on their localization in the combined aggregate. The degree of cyanobacterial heteromorphism increases with time of growth of the association. Evidence of the plant origin of the factors inducing heteromorphic changes in N. muscorum was obtained, as well as evidence indicating that these factors can rapidly diffuse in agarized medium. A conclusion is inferred that the heteromorphic cells correspond to bacterial forms that appear during unbalanced growth as an adaptation to altered environmental conditions.  相似文献   

6.
Summary Tissue cultures of sugarcane support abundant growth ofAzospirillum brasilense (SP 7). Visible after 1–2 weeks as a white or pink slime, this growth reaches 2×108 bacteria/mm2 on the surface of callus. Growth of the bacterium is strictly extracellular in viable callus, and instances of intracellular growth result from rupture of the cell wall during senescence of callus tissue. A significant proportion of the bacterial population on callus is pleomorphic. Varying the nitrogen source in the nutrient medium caused no obvious effect on callus cell structure. The presence of the bacterium caused structural alterations in callus cells which did not inhibit overall growth of the bacterium. Growth of callus as tight groups of cells lacking intercellular spaces may be important for the establishment of a long-term association withAzospirillum. The interface of bacteria and live callus tissue is at the surface of tight cell groups. Browning of the surface cell layers of these groups in the presence ofAzospirillum is not of the rapid nature known for hypersensitivity reactions. Rather, this production of phenolics appears to be due to the accumulation of extracellular bacterial metabolites. The ultrastructure of this and other callus reactions is described. As evidenced by organogenesis, the associated cultures have remained viable for at least 18–20 months.Florida Agricultural Experiment Station Journal Series No. 1695.  相似文献   

7.
Tobacco (Nicotiana tabacum L.) shoots associated with the nitrogen-fixing cyanobacterium Anabaena variabilis Kütz. (ATCC 29413) were regenerated in mixed cultures of tobacco callus and the cyanobacterium. The cyanobacteria were localized inside the tissues as well as on the surface of regenerated shoots, formed heterocysts, and were capable of acetylene reduction.  相似文献   

8.
Summary Structure and ultrastructure changes that occurred during tissue culture of upper explants of hypocotyl (adjacent to cotyledons) of 10-d-old seedlings of Gentiana cruciata were studied. The explants were cultured on Murashige and Skoog induction medium supplemented with 1.0 mg l−1 dicamba +0.1 mg l−1 naphthaleneacetic acid +2.0 mg l−1 benzyladenine +80.0 mg l−1 adenine sulfate. The initial response of the explant and callus formation were ultrastructurally analyzed during the first 11 d of culture. After 6–8 wk, various methods were employed to collect evidence of indirect somatic embryogenesis. After 48 h of culture, the earliest cell response was cell division of epidermis and primary cortex. There were numerous disturbances of karyo- and cytokinesis, leading to formation of multinuclear cells. With time, the divisions ceased, and cortex cells underwent strong expansion, vacuolization and degradation. About the 6th day of culture, callus tissue proliferated and the initial divisions of vascular cylinder cells were observed. Their division appeared normal. Cells originating from that tissue were small, weakly vacuolated, with dense cytoplasm containing active-looking cell organelles. Numerous divisions occurred in the vascular cylinder, which led to its expansion and the formation of embryogenic callus tissue. During the 6–8th wk of culture, in the proximal end of the explant, masses of somatic embryos were formed from outer parts of intensively proliferating tissue.  相似文献   

9.
Two strains of Myxococcus xanthus, and a strain of Myxococcus fulvus were compared with respect to their ability to entrap and lyse trichomes of the cyanobacterium Phormidium luridum var. olivaceae. All of these isolates form colonial aggregates and spherules in either axenic culture with a tryptone-salts medium or in a mixed culture with viable cyanobacterial cells as the sole source of nutrients. Light microscopy showed evidence of swarming activity on the surface of all three myxococci with the accompanying formation of fruiting structures. Extended incubation of mixed cultures showed the myxococci to be capable of long-term control of the cyanobacterial population with predator-prey population cycling occurring on average every 9 days. Serial transfer of mixed cultures into either fresh autotrophic medium or cyanobacterial cultures of 107 per ml showed the persistence of predatory activity. Myxococcal densities were shown to return repeatedly to initial virulent levels. Predator inoculum levels could be reduced to 50 cells per 100 ml in a cyanobacterial culture of 107 per ml. These in vitro data enhance the potential of the myxococcus predatory colony as a biological control agent for in situ cyanobacteria.  相似文献   

10.
The effect of anoxia on the sugarcane (Saccharum officinarum L.) cultured cells was studied in order to elaborate a technique for in vitro selection of cell lines, which would be tolerant to anaerobic stress. Inhibitory and lethal doses of anaerobic incubation were established from the state of the mitochondrial ultrastructure during the anaerobic incubation of cells either with or without exogenous glucose, as well as from the pattern of the post-anaerobic callus growth. An intact state of the mitochondrial ultrastructure and the viability of some cells in the presence of 3% glucose were shown to be maintained for at least 14 days of anaerobic incubation, while the index of post-anaerobic growth decreased by almost 50% even after 72-hour-long anaerobiosis. In the absence of exogenous glucose, a marked destruction of mitochondria and a twofold decrease in the callus growth index were observed as early as after six-hour-long anaerobic stress. A 48-hour-long incubation under these conditions resulted in the maintenance of the intact ultrastructure only in 7–10% of cells, while a 96-hour-long anaerobiosis brought about the complete degradation of the subcellular structure and cell death. A 48-hour-long anaerobiosis without exogenous glucose was chosen for selecting the anoxia-tolerant cell lines. After three cycles of selection, the anoxia tolerance of the selected cell line exceeded the respective index of the initial callus several-fold. In selected line, about 50% of cells retained viability and could resume growth even after 96-hour-long anaerobic incubation. The experimental results obtained were used to determine the possible causes of the heterogeneity of callus cells as regards their anoxia resistance.  相似文献   

11.
Natural products and enzymes from plant cell cultures   总被引:3,自引:0,他引:3  
Plants represent an unlimited source of natural products. Many of the recently detected phytochemicals exhibit remarkable bioactivities, ranging from anticancer activity, phosphodiesterase inhibition to cytotoxicity against HIV-infected cells. Cultivated plant cells produce at their unorganized, dedifferentiated stage secondary metabolites, but in very different amounts in so far as new compounds are concerned. In fact, more than 140 novel natural products are presently known from plant cell cultures, which also include new metabolites formed by biotransformation. The biotransformation capacity of suspended cells is described and recent high yielding transformations, like the formation of arbutin by hydroquinone-transformation withRauwolfia cells are discussed. As an example of alkaloid production by cell suspensions, the pattern of monoterpenoid indole alkaloids of the Indian medicinal plantRauwolfia serpentina Benth. is described and the so far 30 identified compounds are divided into eight groups which are biosynthetically closely related. Some of the key biosynthetic reactions leading to theRauwolfia alkaloids are discussed and an overview of the enzymes involved in the formation of the alkaloid ajmaline and proteins catalyzing side reactions of the ajmaline pathway are given.  相似文献   

12.
Karni  Leah  Moss  Stephen J.  Tel-Or  Elisha 《Archives of microbiology》1984,140(2-3):215-217
Glutathione reductase activity was detected and characterized in heterocysts and vegetative cells of the cyanobacterium Nostoc muscorum. The activity of the enzyme varied between 50 and 150 nmol reduced glutathione· min-1·mg protein-1, and the apparent Km for NADPH was 0.125 and 0.200 mM for heterocysts and vegetative cells, respectively. The enzyme was found to be sensitive to Zn+2 ions, however, preincubation with oxidized glutathione rendered its resistance to Zn+2 inhibition. Nostoc muscorum filaments were found to contain 0.6–0.7mM glutathione, and it is suggested that glutathione reductase can regenerate reduced glutathione in both cell types. The combined activity of glutathione reductase and isocitrate dehydrogenase in heterocysts was as high as 18 nmol reduced glutathione·min-1·mg protein-1. A relatively high superoxide dismutase activity was found in the two cell types; 34.2 and 64.3 enzyme units·min-1·mg protein-1 in heterocysts and vegetative cells, respectively.We suggest that glutathione reductase plays a role in the protection mechanism which removes oxygen radicals in the N2-fixing cyanobacterium Nostoc muscorum.Abbreviations DTNB 5-5-dithiobis-(2-nitrobenzoic acid) - EDTA ethylenediaminetetra-acetic acid - GR glutathione reductase (EC1.6.4.2) - GSH reduced glutathione - GSSG oxidized glutathione - OPT O-phtaldialdehyde - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

13.
Summary The cell ultrastructure in three types of callus obtained from leaf explants ofAesculus hippocastanum L. has been studied. Remarkable differences have been shown between the cells of the forerunner E1 callus and those of the callus arising from it, according to the culture conditions.The peculiar characteristics of E1 are the scarcity of intercellular spaces and the occurrence of autophagic vacuoles in the cells.An embryogenic friable callus (E2) is formed in time when E1 is maintained on solid culture medium. The E2 cells show cytological features typical of a higher metabolic level and contain starch. Diffused middle lamella digestion leads to the detachment of small embryogenic cell aggregates consisting of vacuolated parenchymatous-like cells and small meristematic cells which may be regarded as embryoids initials.Shaking E1 in the same liquid medium and subsequent culture on solid medium lead to the differentiation of a non-embryogenic callus (NE), whose cells are very large and highly vacuolated, devoid of starch and with organelle-rich cytoplasm. The NE callus shows a high degree of growth, but does not attain embryogenic competence in time.Abbreviations c cell - cr crystal - cw cell wall - d dictyosome - er endoplasmic reticulum - m mitochondrion - mb microbody - n nucleus - p plastid - s starch - v vacuole  相似文献   

14.
Crude methanol extracts from callus cultures of Nigella arvensis, N. damascena, N. hispanica, N. integrifolia, and N. sativa were investigated for their anti-microbial activity. Growth inhibition was determined in Gram-positive and Gram-negative bacterial strains as well as in yeast by using a broth-microdilution method. The results showed that the extracts of all calli tested exhibited significant anti-microbial activity, especially against Bacillus cereus, Staphylococcus aureus and Staphylococcus epidermidis. Compared with other Nigella species, a callus culture of N. hispanica was the most effective against the microorganisms used in this study.  相似文献   

15.
Quantitative trait loci (QTLs) that control the performance of tissue culture in rice were detected by using 116 RFLP markers and 183 BC1F3 lines derived from two varieties, Koshihikari and Kasalath. With time, the seed callus of Koshihikari tends to turn brown and stop growing, while that of Kasalath remains yellowish-white and proliferates continuously. The performance of tissue culture in the induction of calli from seed, the subculture of induced calli, and shoot regeneration were evaluated by five indices: induced-callus weight, induced-callus color, subcultured-callus volume, subcultured-callus color, and regeneration rate. Through callus induction and subculture, eight putative QTLs (P < 0.001) were located on chromosomes 1, 4, and 9. Among these QTLs, five Kasalath alleles and three Koshihikari alleles improved tissue culture performance. No QTL for regeneration was found. Among all the QTLs, qSv1 explained the largest phenotypic variance, 33%, in subcultured-callus volume. In induced-callus color, two detected QTLs accounted for 36.4% of the total phenotypic variance; this was the highest score among the five indices used to evaluate the performance of tissue culture. Three near-isogenic lines for QTLs, located in two regions on chromosome 1, were developed to evaluate their tissue culture performance. The Kasalath alleles in qSv1 and qSc1-1 improved callus color through callus induction and subculture, and increased the subcultured-callus volume and the fresh weight of regenerated calli, including shoots, roots, and differentiated structures. In qSc1-2, the Kasalath allele improved callus color through induction and subculture. These results verified the presence of QTLs for the volume and color of subcultured callus on chromosome 1, qSv1, qSc1-1, and qSc1-2.  相似文献   

16.
The incompatibility between the wild species N. africana Merxm. and the cultivated species N. tabacum has been overcome by in vitro techniques. Underdeveloped F0 seeds, placed on MS medium with supplements, produced plants which upon reaching the stage of anthesis proved to be completely sterile. Female sterility of F1 hybrids was overcome by applying tissue culture methods. Explants of stem parenchyma were grown in vitro. In every passage investigations were made of their callus production, organogenesis and cell polyploidization. The regenerants showed a great diversity in their morphological and cytological characters. Pollination of the R1 plants (N. africana × N. tabacum) with N. tabacum produced normally seeded capsules. BC1 plants were male sterile. The male sterility of the first backcross generation was preserved in BC2 and BC3, proving its cytoplasmic origin.  相似文献   

17.
Five different artificial associations of cyanobacterial cells with the cells or tissues of nightshade and rauwolfia were studied. The associations grown on nitrogen-containing media produced heterocysts. Cyanobacterial cells in the associations retained their ability to take up bound nitrogen from the medium, to store it in the form of cyanophycin granules, and to use them in the process of symbiotic growth. The synthesis and degradation of cyanophycin granules in cyanobacterial cells were more active in the associations than in monocultures. In the symbiotic associations of Chlorogloeopsis fritschii ATCC 27193 with Solanum laciniatum cells and of Nostoc muscorum CALU 304 with the Rauwolfia serpentina callus, heterocysts were produced at 3- to 30-fold higher cyanophycin contents than in cyanobacterial monocultures. In contrast, in the association of N. muscorum CALU 304 with the Solanum dulcamara callus, heterocysts were produced at lower cyanophycin contents than in the N. muscorum CALU 304 monoculture. The degradation of cyanophycin granules in N. muscorum CALU 304 cells grown in associations with plant tissues or cells was subjected to mathematical analysis. The activation of cyanophycin degradation and heterocyst production in the associations N. muscorum CALU 304-R. serpentina and C. fritschii-S. laciniatum was accompanied by an enhanced synthesis of the nitrogen-containing alkaloids in plant cells. The data obtained suggest that an integrated system of nitrogen homeostasis can be formed in symbiotic associations. Depending on the growth stage of an association, its plant member can either stimulate the accumulation of bound nitrogen in vegetative cyanobacterial cells in the form of cyanophycin granules, or activate their degradation, or initiate the formation of heterocysts independently of the cyanobacterial sensory-signalling system.  相似文献   

18.
The effects of nitrogen limitation on the ultrastructure of the unicellular cyanobacterium, Agmenellum quadruplicatum, were studied by thin sectioning transmission electron microscopy. Nitrogen became limiting for growth 14–15 h after transfer to nitrogen-limiting medium, but cultures retained full viability for at least 45 h. The c-phycocyanin: chlorophyll a ratio and cellular nitrogen content of the culture dropped rapidly after 14–15 h, as a progressive deterioration of major cell structures took place. Phycobilisomes were degraded first, followed by ribosomes and, then, thylakoid membranes. These structures were virtually depleted from the cells within 26 h. Intracellular polysaccharide accumulated in place of the normal cell structures throughout this period. Nitrogen limitation did not affect polyphosphate bodies, carboxysomes, lipid granules, the cell envelope, or the extra-cellular glycocalyx. All of the ultrastructural changes resulting from nitrogen limitation were reversed upon addition of nitrate to a starved culture. Most cell structures were restored within 3 h, and restoration was complete within 9 h.  相似文献   

19.
Two strains of a cyanobacterium Nostoc muscorum, wild-type N. muscorum (Cds) and an isolate having resistance to the heavy metal cadmium (Cdr), were selected for characterisation of their growth potential and physiological assays in certain defined stress environments. The chosen determinants were copper (heavy metal) and NaCl (salt stress). The observations on growth, heterocyst frequency, chlorophyll and nucleic acid contents, photosynthetic O2 evolution, 14C incorporation and acetylene reduction suggested that the strain Cdr was also resistant to copper. This strain, however, was found to be more sensitive to NaCl in comparison to its wild-type counterpart. NaCl was found to enhance sugar accumulation in Cds and was more inhibitory to acetylene reduction rates than to the photosynthetic activities. The interaction between Cu and NaCl appeared to be antagonistic as the depression of growth and physiological activities by a mixture of the two was lesser than that caused by either of these. These observations form the first report on the response of a metal resistant strain of cyanobacterium to salinity.  相似文献   

20.
Summary Previous experiments have revealed that the maize transposable element Activator (Ac) may become active during tissue culture. The objective of the present study was to determine whether a second transposable element, Suppressor-mutator (Spm), could also be activated in tissue culture and detected in regenerated maize plants. Approximately 500 R1 progeny of 143 regenerated plants (derived from 49 embryo cell lines) were crossed as males onto an Spm-responsive tester stock. Spm activity was observed in two R1 progeny of a single regenerated plant. This plant had been regenerated from Type II (friable embryogenic) callus of an A188 × B73 genetic background after 8 months in culture; the absence of Spm activity in four other plants regenerated from this same callus demonstrates that Spm activity was not present before culturing. Approximately 20 Spm-homologous DNA sequences were detected in each of the inbreds used to initiate the tissue cultures; it is presumed that one of these became active to give rise to Spm activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号