首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Salinity is one of the main chemical factors in salt marshes. Studies focused on the analysis of salinity tolerance of salt marsh plants are very important, since they may help to relate their physiological tolerances with distribution limits in the field. Spartina densiflora is a South America cordgrass, which has started its invasion of the European coastline from the southwestern Iberian Peninsula. In this work, short-term responses in adult tussocks of S. densiflora from southwestern Spain are studied over a wide range of salinity in a greenhouse experiment. Our results point out that S. densiflora has a high tolerance to salinity, showing high growth and net photosynthesis rates from 0.5 to 20 ppt. S. densiflora showed at the lowest salinity (0.5 ppt) high levels of photoinhibition, compensated by higher levels of energy transmission between photosystems. Adaptative mechanisms, as those described previously, would allow it to live in fresh water environments. At the highest salinity (40 ppt), S. densiflora showed a high stress level, reflected in significant decreases in growth, net photosynthesis rate and photochemical efficiency of Photosystem II. These responses support S. densiflora invasion patterns in European estuaries, with low expansion rates along the coastline and faster colonization of brackish marshes and river banks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Although salinity in many ecosystems such as salt marshes can be extremely high, an asymmetry in salinity range between experimental studies (relatively narrow) and field conditions (potentially broad) has strongly affected current understanding of plant salinity tolerance. To improve understanding, it is thus important to examine plant tolerances over a broad range of salinities and identify potential tolerance thresholds. We examine tolerances of two widely distributed marsh plants, Suaeda salsa and Salicornia europaea, to salinities ranging from 0 to 100 g/kg, and determine survival, above‐ and belowground biomass after 8 weeks of salinity treatment. Both species, Sa. europaea in particular, have much broader salinity tolerances than other plants previously examined, (2) plant survival, above‐ and belowground biomass have remarkably different responses to salinity, and (3) there is a nonlinear, threshold response of S. salsa to salinity, above which S. salsa survivorship drastically decreases. These results provide multiple important insights. Our study suggests that the potential for using these halophytes to revegetate and restore salt‐affected land may be greater than previously thought, and highlights the importance of studying multiple plant responses. Importantly, our study calls for a better integration of thresholds into understanding plant salinity tolerances and their applications.  相似文献   

3.
The influence of flooding and salinity on photosynthesis and water relations was examined for four common coastal tree species [green ash (Fraxinus pennsylvanica Marshall), water tupelo (Nyssa aquatica L.). Chinese tallow (Sapium sebiferum (L.) Roxb.), and baldcypress (Taxodium distichum (L.) Richard)]. Both chronic (as might be associated with sea level rise) and acute (similar to hurricane storm surges) exposures to these stresses were examined. Chronic freshwater flooding of green ash, water tupelo, and Chinese tallow seedlings reduced photosynthesis (A) relative to that of watered seedlings, while baldcypress was unaffected. Chinese tallow A declined with increasing length of flooding. A salinity increase of the floodwater to 2 ppt decreased A of baldcypress and water tupelo, but not A of green ash and Chinese tallow, which was already severely reduced by freshwater flooding. All seedlings of the four species died within 2 to 6 weeks when flooded with 10 ppt saltwater. Photosynthesis of all four species did not differ between 0 and 2 ppt watering. Watering with 10 ppt salinity initially reduced A of all four species, but the seedlings recovered over time. Photosynthesis was severely decreased for all species when flooded with 21 ppt salinity for 48 hours. Reduced A continued following the treatment. Photosynthesis of only green ash and water tupelo was reduced by watering with 21 ppt salinity for 48 hours. Flooding of low-lying areas with increased salinity would lead to shifts in species composition of coastal forests due to these differential tolerances.  相似文献   

4.
The Broadwater of the Myall Lakes system is highly susceptible to cyanobacterial bloom formation after heavy rain events. During prolonged low flow periods, saline intrusion from the lower Myall River increases salinity levels and effectively controls some bloom forming algal taxa. To assess the effect of low-to-moderate increases in salinity (up to 4 ppt) on phytoplankton chlorophyll a, cell abundance, diversity and assemblage structure, salinity enhancement experiments were conducted on Broadwater samples collected in June 2005 (salinity 1.5 ppt), October 2005 (4 ppt) and January 2006 (12 ppt). Natural phytoplankton assemblages were incubated in the laboratory for 10 days, under different treatments of salinity (no addition, +2 ppt, + 4 ppt) and nutrient conditions (no addition, excess N+P). The greatest impact of salinity enhancement in N+P enriched samples was observed in June (1.5–5.5 ppt); chlorophyll a was significantly reduced in samples with the highest salinity treatment, and the taxon most negatively affected by an elevation in salinity to 5.5 ppt was Anabaena circinalis. Taxonomic richness and diversity (Shannon–Wiener index) were unexpectedly significantly higher at 5.5 ppt than at 1.5 ppt. This result, in part, explains the observed significant differences in phytoplankton assemblage structure over this salinity range. In October, the main effect of elevating salinity levels from 4 ppt to 8 ppt was a reduction in the abundance of chlorophytes, particularly Scenedesmus. Phytoplankton samples that were collected when the lake salinity level was 12 ppt were little affected by salinity increases of 2 ppt and 4 ppt, most likely because field samples were already relatively high in salt content. We suggest that further investigations focus on phytoplankton responses to salinity under a range of nutrient regimes that are common to coastal lakes.  相似文献   

5.
In California’s Sacramento-San Joaquin estuary, environmental protection and habitat restoration efforts directed at a threatened native osmerid, the delta smelt (Hypomesus transpacificus), are complicated by the presence of a morphologically similar non-native congener, the wakasagi (H. nipponensis), transported to the estuary from upstream reservoirs. In order to better define delta smelt critical habitat and to evaluate the potential for habitat overlap by these two species, we compared the tolerances of the two species to temperature, salinity, and water velocity, environmental factors that vary spatially and temporally within the estuary. For fishes acclimated to 17°C and fresh water (0 ppt), we measured critical thermal maxima and minima, chronic upper salinity tolerance limits, and critical swimming velocities. Wakasagi had higher critical thermal maxima (29.1°C vs. 25.4°C for delta smelt), lower critical thermal minima (2.3°C vs. 7.5°C for delta smelt), higher upper salinity tolerances (26.8 ppt vs. 19.1 ppt for delta smelt), and swam faster (for 6–6.9 cm SL fish, 43.3 cm s–1 vs. 28.2 cm s–1 for delta smelt) than delta smelt. This suggests that the wide seasonal and year-to-year fluctuations in temperature, salinity, and flow typical in the estuary would not exclude wakasagi, although their eggs and larvae may be less tolerant. With respect to these factors, the native delta smelt may be at a physiological disadvantage, particularly in habitats with suboptimal environmental conditions, and may be excluded from shallow-water habitat restoration sites, which are characterized by poor circulation, low flows, and more environmentally extreme conditions. The low abundance of wakasagi in the estuary recorded to date may indicate that factors other than temperature, salinity, and flow determine wakasagi distribution. Received: 25 August 1999 / Accepted: 22 November 1999  相似文献   

6.
Y. Ye  Y. T. Gu  H. Y. Gao  C. Y. Lu 《Hydrobiologia》2010,641(1):287-300
To investigate the effects of the simultaneous occurrence of salt stress and tidal sea-level rise on mangroves, potted Kandelia candel seedlings were treated under deep flooding (flooded 40 cm above the soil surface for 16 h per day, inundating the entire plant) and shallow flooding (flooded just above the soil surface for 8 h per day) at salinity levels of 5, 15, and 25 ppt over 14 months. Deep flooding enhanced stem elongations at all salinity levels but increased stem biomass only at 5 ppt. Deep flooding increased both leaf production and leaf fall; leaf biomass increased at 5 ppt, but decreased at 15 and 25 ppt. Biomass ratios of root/shoot (R/S) of deep flooding treatments were significantly lower than those of shallow flooding treatments. Under deep flooding, superoxide dismutase (SOD) activities did not show significant change between 5 and 15 ppt, but increased at 25 ppt. With increasing salinity level, peroxidase (POD) activities increased, and the difference between shallow and deep flooding was enhanced. Malonaldehyde (MDA) content significantly decreased at 25 ppt with 40 cm flooding, but was not affected by other treatments. These results demonstrated that the growth and physiological responses of K. candel seedlings under deep flooding conditions varied with salinity level; growth was enhanced at low salinity level but inhibited at high salinity level. It is therefore probable that K. candel will shift from downstream to upstream, where the influence of fresher river water resources will ameliorate the effects of increased salinities that accompany deeper tidal flooding in these mangrove ecosystems.  相似文献   

7.
Recent salt marsh and barrier island restoration efforts in the northern Gulf of Mexico have focused on optimizing self-sustaining attributes of restored marshes to provide maximum habitat value and storm protection to vulnerable coastal communities. Salt marshes in this region are dominated by Spartina alterniflora and Avicennia germinans, two species that are valued for their ability to stabilize soils in intertidal salt marshes. We conducted a controlled greenhouse study to investigate the influences of substrate type, nutrient level, and marsh elevation on the growth and biomass allocation of S. alterniflora and A. germinans, and the consequent effects on soil development and stability. S. alterniflora exhibited optimal growth and survival at the lowest elevation (? 15 cm below the water surface) and was sensitive to high soil salinities at higher elevations (+ 15 cm above the water surface). A. germinans performed best at intermediate elevations but was negatively affected by prolonged inundation at lower elevations. We found that although there was not a strong effect of substrate type on plant growth, the development of stressful conditions due to the use of suboptimal materials would likely be exacerbated by placing the soil at extreme elevations. Soil shear strength was significantly higher in experimental units containing either S. alterniflora or A. germinans compared to unvegetated soils, suggesting that plants effectively contribute to soil strength in newly placed soils of restored marshes. As marsh vegetation plays a critical role in stabilizing shorelines, salt marsh restoration efforts in the northern Gulf of Mexico and other storm impacted coasts should be designed at optimal elevations to facilitate the establishment and growth of key marsh species.  相似文献   

8.
L. Perry  K. Williams 《Oecologia》1996,105(4):428-434
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.  相似文献   

9.
The interplay between storms and sea level rise, and between ecology and sediment transport governs the behavior of rapidly evolving coastal ecosystems such as marshes and barrier islands. Sediment deposition during hurricanes is thought to increase the resilience of salt marshes to sea level rise by increasing soil elevation and vegetation productivity. We use mesocosms to simulate burial of Spartina alterniflora during hurricane‐induced overwash events of various thickness (0–60 cm), and find that adventitious root growth within the overwash sediment layer increases total biomass by up to 120%. In contrast to most previous work illustrating a simple positive relationship between burial depth and vegetation productivity, our work reveals an optimum burial depth (5–10 cm) beyond which burial leads to plant mortality. The optimum burial depth increases with flooding frequency, indicating that storm deposition ameliorates flooding stress, and that its impact on productivity will become more important under accelerated sea level rise. Our results suggest that frequent, low magnitude storm events associated with naturally migrating islands may increase the resilience of marshes to sea level rise, and in turn, slow island migration rates. Synthesis: We find that burial deeper than the optimum results in reduced growth or mortality of marsh vegetation, which suggests that future increases in overwash thickness associated with more intense storms and artificial heightening of dunes could lead to less resilient marshes.  相似文献   

10.
Sediment deposition is a common phenomenon in the estuary area. Pot control experiments were conducted to evaluate the interaction effects of sediment burial depth and salt stress on the seed germination and early seedling growth of Suaeda salsa (L.) Pall., an pioneer species of tidal wetland near the Yellow River Delta. The results showed that the percentage of seedling emergence, seedling emergence rate, seedling height, branch number, shoot biomass and root biomass were all significantly affected by salt stress and sediment burial depth. While the interaction of salt and burial depth significantly influenced the branch number, leaf biomass, shoot biomass and total plant biomass. Only 5 cm burial depth without salt stress should 6.25 ± 3.61% seedlings emergence. With the increasing of sediment burial depth and salt stress, percentage of seedling emergence, seedling emergence rate and plant height decreased significantly. However, under the salt treatment of 0 and 1%, the branch number increased dramatically with the increasing of sediment burial depth from 0 to 3 cm. The ratio of leaf to total biomass increased with increasing of burial depth, on the contrary, the ratio of root to total biomass decreased. 0–1 cm sediment burial depth was proved the suitable depths for seed germination of S. salsa in the coastal wetland of the Yellow River Delta. Our findings contribute to a better understanding of how to improve the seedling establishment of S. salsa under the dynamic changes of sediment deposition and salinity in the coastal wetland of the Yellow River Delta.  相似文献   

11.
Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%?80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.  相似文献   

12.
During coastal wetland restoration, foundation plant species are critical in creating habitat, modulating ecosystem functions, and supporting ecological communities. Following initial hydrologic restoration, foundation plant species can help stabilize sediments and jump‐start ecosystem development. Different foundation species, however, have different traits and environmental tolerances. To understand how these traits and tolerances impact restoration trajectories, there is a need for comparative studies among foundation species. In subtropical and tropical climates, coastal wetland restoration practitioners can sometimes choose between salt marsh and/or mangrove foundation species. Here, we compared the early life history traits and environmental tolerances of two foundation species: (1) a salt marsh grass (Spartina alterniflora) and (2) a mangrove tree (Avicennia germinans). In an 18‐month study of a recently restored coastal wetland in southeastern Louisiana (USA), we examined growth and survival along an elevation gradient and compared expansion and recruitment rates. We found that the rapid growth, expansion, and recruitment rates of the salt marsh grass make it a better species for quickly establishing ecological structure at suitable elevations. The slower growth, limited expansion, and lower recruitment of the mangrove species show its restricted capacity for immediate structural restoration, especially in areas where it co‐occurs with perennial salt marsh species. Our findings suggest that the structural attributes needed in recently restored areas can be achieved sooner using fast‐growing foundation species. Following salt marsh grass establishment, mangroves can then be used to further assist ecosystem development. This work highlights how appropriate foundation species can help jump‐start ecosystem development to meet restoration objectives.  相似文献   

13.
This study provides some results about microbial activity in salt marsh sediments. Microbial activity was determined by profiling extracellular enzyme activities in three Tagus estuary marshes and in two sediments horizons: surface layer (0–2 cm) and depth (8–10 cm). Five enzymatic activities were examined (β-glucosidase, cellulase, alkaline phosphatase, potential nitrification and nitrate reductase). All extracellular enzymatic activities were highest in the surface layer and decreased with depth. β-glucosidase and alkaline phosphatase prevailed both in surface sediments (1150 and 1200 ηmol h−1 g−1, respectively) and in deeper sediments (150 and 200 ηmol h−1 g−1, respectively). Microbial activities differed significantly between salt marshes. The marsh location in the estuary seemed to contribute to these differences: marshes located in the proximity of urbanised and industrial areas had higher microbial activities.  相似文献   

14.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   

15.
Reintroduction of fresh water to coastal systems with altered hydrologic regimes is a management option for restoring degraded wetland habitats. Plant production in these systems is believed to be enhanced by increased nutrient availability and reduced salinity. Although studies have documented nutrient limitation and salinity stress in coastal marshes, interpreting the effects of freshwater reintroduction on plant production is difficult because high nutrient availability often is confounded with low salinity. We tested the hypothesis that plant growth response to nutrients does not vary with salinity in a greenhouse study. Treatments consisted of four nutrient concentrations and four non-lethal salinity levels; plant response was measured as biomass accumulation after 144 days of exposure. The significant interaction between salinity and nutrient concentrations indicates that response of Spartina patens marshes to freshwater inflows would vary by site-specific soil conditions. Biomass decreased with increased salinity at all four nutrient concentrations with variation among the nutrient concentrations decreasing as salinity increased. We demonstrate the importance of considering ambient salinity and nutrient soil conditions in restoration planning involving freshwater inflow. We propose salinity should remain a primary concern in restoration plans targeted at improving degraded S. patens-dominated marsh habitat.  相似文献   

16.
The effects of substrate salinity and salt spray upon seedlings of Scaevola sericea were examined in this study. Three levels of substrate salinity: 0.0 ppt, 3.0 ppt, and 10.0 ppt were examined in conjunction with three levels of salt spray: zero, medium (200 mg m-2mdd-1), and high (1200–1500 mg-m-2mdd-1). Leaf surface area, root to shoot ratio, as well as leaf, stem, and root mass decreased significantly (P 0.05) with increasing substrate salinity. Biomass accumulation was very low at 10.0 ppt substrate salinity, suggesting that higher levels of substrate salinity cannot be tolerated by the seedlings. Salt spray had a substantial effect on several of these variables, however its effects were less pronounced than those of substrate salinity. Cell sap osmolarity, leaf thickness, and leaf specific mass increased significantly (P 0.05) with both increasing substrate salinity and salt spray levels. Leaf carbon isotope ratios (δl3C) became more positive with increasing salinity, indicating an enhancement of the intrinsic water use efficiency of the seedlings at higher salinities. Scaevola sericea is one of the dominant plants found at the leading edge of strand communities in the Hawaiian archipelago and throughout much of the tropical Pacific. Since substrate salinity and salt spray increase with proximity to the ocean, the two factors may act together to limit the seaward expansion of S. sericea in coastal habitats.  相似文献   

17.
18.
Three populations of non-native Asian swamp eels are established in peninsular Florida (USA), and comprise two different genetic lineages. To assess potential for these fish to penetrate estuarine habitats or use coastal waters as dispersal routes, we determined their salinity tolerances. Swamp eels from the three Florida populations were tested by gradual (chronic) salinity increases; additionally, individuals from the Miami population were tested by abrupt (acute) salinity increases. Results showed significant tolerance by all populations to mesohaline waters: Mean survival time at 14 ppt was 63 days. The Homestead population, a genetically distinct lineage, exhibited greater tolerance to higher salinity than Tampa and Miami populations. Acute experiments indicated that swamp eels were capable of tolerating abrupt shifts from 0 to 16 ppt, with little mortality over 10 days. The broad salinity tolerance demonstrated by these experiments provides evidence that swamp eels are physiologically capable of infiltrating estuarine environments and using coastal waters to invade new freshwater systems.  相似文献   

19.
Exposure of coral reefs to river plumes carrying increasing loads of nutrients and sediments is a pressing issue for coral reefs around the world including the Great Barrier Reef (GBR). Laboratory experiments were conducted to investigate the effects of changes in inorganic nutrients (nitrate, ammonium and phosphate), salinity and various types of suspended sediments in isolation and in combination on rates of fertilisation and early embryonic development of the scleractinian coral Acropora millepora. Dose–response experiments showed that fertilisation declined significantly with increasing sediments and decreasing salinity, while inorganic nutrients at up to 20 μM nitrate or ammonium and 4 μM phosphate had no significant effect on fertilisation. Suspended sediments of ≥100 mg l−1 and salinity of 30 ppt reduced fertilisation by >50%. Developmental abnormality occurred in 100% of embryos at 30 ppt salinity, and no fertilisation occurred at ≤28 ppt. Another experiment tested interactions between sediment, salinity and nutrients and showed that fertilisation was significantly reduced when nutrients and low concentrations of sediments co-occurred, although both on their own had no effect on fertilisation rates. Similarly, while slightly reduced salinity on its own had no effect, fertilisation was reduced when it coincided with elevated levels of sediments or nutrients. Both these interactions were synergistic. A third experiment showed that sediments with different geophysical and nutrient properties had differential effects on fertilisation, possibly related to sediment and nutrient properties. The findings highlight the complex nature of the effects of changing water quality on coral health, particularly stressing the significance of water quality during coral spawning time. Communicated by Environment Editor Professor Rob van Woesik  相似文献   

20.
The influence of salinity on Typha orientalis and Juncus kraussii was documented in experiments on germination of seeds and on growth of seedlings and adult, rhizome-bearing plants. Juncus was more salt-tolerant than Typha at all three life-history stages, but salt tolerance increased with plant age for both species. Although seeds of both species germinated at 0 and 5 ppt, the germination data overestimated salt tolerance for Typha. Only the newly emerged seedlings of Juncus were capable of growth after removal from the 5 ppt NaCl solution to fresh water. Typha seedlings that initiated growth at 0 ppt grew well at 5 ppt but not at 10 ppt, while Juncus seedlings were tolerant of 10 ppt. Although the 20 ppt treatment caused high mortality of Juncus seedlings, the 10 ppt treatment mainly reduced growth. Adult plants of Typha, which were collected from the field, survived the 20 ppt treatment, while adult Juncus survived the 40 ppt treatment. The presence of salt (10–40 ppt) shortened the growing season for adult, rhizome-bearing plants of both Juncus and Typha, with a lower maximum and earlier peak in total leaf length and maximum leaf number. Thus, the greater biomass in fresh water was achieved primarily through a longer growth period, rather than a greatly accelerated growth rate. Interactions between the two species were explored in mixed-species culture of both seedlings and adult rhizome-bearing plants. Interspecific interactions were present at low salinity, but results differed for seedlings and adult plants. Typha seedlings failed to outgrow Juncus seedlings (at 5 ppt) but adult plants of Typha outgrew Juncus (at 0 ppt). Relative yields (biomass in mixed/pure pots) for Juncus and Typha seedlings were 0.85 and 0.26 at 5 ppt. Relative yields of adult plants were 0.24 for Juncus and 1.20 for Typha at 0 ppt. For both seedlings and adults, the species that ultimately dominated the mixed-species pots produced just as much total biomass as in pure-species pots, even though initial planting density was half as high. Extrapolating findings to the field situation, it appears that Typha has a narrow regeneration niche. The indication is that Typha could invade Juncus stands only following salinity reduction (allowing seed germination and early seedling growth) and after disturbance disrupts the native vegetation. The combined conditions of prolonged low salinity and open habitat occur where street drains are cut through the salt marsh. The probability of Typha becoming established would be highest in such areas. vegetative expansion would follow with continued freshwater influx, as rhizome-bearing plants gain an interspecific advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号